$$
\begin{aligned}
& \text { PROPAGATED } 3 \\
& \text { ACTIvITY }
\end{aligned}
$$

RECORD

$7530-222-3525$
 FEDERAL SUPPLY SERVICE

W. Rall Notional tustimber
offealth
Bethesta, Warglart
Bley 31, 9A-23

Computations of Propogated Activity
Recond
Witfird Rall
This secord begun Nov. 6, 1963, but restrospective to Qdapendence notes in other notboon (July 1963)

Totele of Contant on po 5

$$
\begin{aligned}
& \text { 00त tintu }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 2.a no ditura adot }
\end{aligned}
$$

Begar todevelope new program Series
WXR 701C
$8 / 5 / 63$
WXR 703 C
WXR 706 C
$\begin{aligned} & \text { Besed upon success of } 732.109(7 / 26 / 63) \\ &(7 / 22 / 63)\end{aligned}$ with Berman Weiss Progrom
732.100 series explosed a compertmental model to mimic action potential ine a suigle compartment.
WXR 700 series set out to propagate in chain of Compertuents Purpose wes to compntef for actrie and passive chain and plot results.

Subrontins WXR Y/C Runge-Kutta for possive chain

$$
\rightarrow W \times R 74 \mathrm{C} \longrightarrow W \times R 78 \mathrm{C}
$$

Subrontine WXRY2C: plotting subrontine besed mitially upon Berman-heiss 63-E

$$
\rightarrow W \times R 75 \mathrm{C} \rightarrow W \times R 76 \mathrm{C}
$$

Subroutine WXR 73C: Runge-Kutta foractive chain

$$
\Rightarrow W X R Y 7 C
$$

The model of 732. 109 wis $(7 / 2663)$ antially this
 (mulin were notos ditat $Y / 19 / 63$)
$Q_{4}(0)=50$. (source compertmont for feecting fluy)

$$
\begin{aligned}
& \lambda_{14}=\left(4_{0}\right) Q_{2} \\
& \lambda_{21}=(20) Q_{1} \\
& \lambda_{32}=15 .
\end{aligned}
$$

$$
\lambda_{31}=(20 .) Q_{3} \quad \text { Thisproduces quench }
$$

$$
\lambda_{43}=5
$$

$$
\lambda_{41}=2
$$

-rpmex: vacth $\left(4_{0}\right) q_{4} Q_{2}$

$$
\begin{aligned}
& \dot{Q}_{1} \simeq(200 .) Q_{2}-(20)\left(Q_{1}\right)^{2}-(20 .) Q_{1} Q_{3} \\
& \dot{Q}_{2}=(20)\left(Q_{1}\right)^{2}-(150) Q_{2} \\
& \dot{Q}_{3}=(150) Q_{2}+(20 .) Q_{1} Q_{3}-(5 .) Q_{3} \\
& \dot{Q}_{4}=(2 .) Q_{1}+(50) Q_{3}-\left(4_{0}\right) Q_{2} Q_{4} \quad \frac{\dot{Q}_{4}}{Q_{4}} \approx 0 .
\end{aligned}
$$

$$
\begin{aligned}
& \text { 8) }
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{sf}(1+)=1 \mathrm{~K} \\
& \text { 1) }(05)=105 \\
& \text { ता }=58
\end{aligned}
$$

$$
\begin{aligned}
& .6=8
\end{aligned}
$$

$$
\begin{aligned}
& \text { (2) } 1 \text {) }(08) \rightarrow\left(1(0)(0.0)-\left(\rho^{2}\right) \simeq i p\right. \\
& \text {-y) }(.01)-(1 y)(.8)=i) \\
& 8 p(.6)-81 p(.06)+89(.06)==8 \\
& 025+5>(6)-8(9)+8(5)+8)
\end{aligned}
$$

Thrasbold believed to be dueto dependence of Q_{2} upon squore of Q_{1}
Explosine grouth occurs when Q2 exceeds
some volue.
Quenching occurs when Q3 exceeds somevalue.
Ore difficutty was that peak of this action poteutíal tended to lie very sensitite to retation hetween explosire rate and quenchn rate abcoll as sotes goverung Q_{2} \& Q3.
ettanpad to correct this svith something onntoequilitrin poteutral.
By makring λ_{31} depend upon λ_{14}, - nit got Sncfu be cause Berman-Weiss progru does not sustain Pdependence through a dependerce relation betwern two praranetets.
At this point decidd to prers own pregrane and gef andy fom stunet compartwnental woisel of sthot enirtahoms of Bennon Weiss program.
aboopt. sp menz

$$
\begin{aligned}
& \text { "growth 7hy" ~"7refing Heny" "Na Huy" } \\
& \text { "Quanch 7hy" "K Hhy" }
\end{aligned}
$$

Model in WXR73C was (9/26/63)

for j not at either end
"QUENCH" is rate const "i"

$$
\begin{aligned}
& \left(Q \mathrm{M}_{j}\right)_{j}=(\text { RACT })\left(Q \beta_{j}\right)_{j}\left(1-Q K_{j}\right)-\left(1 .+2_{j} \cdot G\right)\left(Q K_{j}\right)+G\left(Q K_{j-1}+Q K_{j-1}\right) \\
& \text { - }(Q U E N C H)(Q C)(Q K)_{j} \\
& (Q \mid)_{j}=(R \mid N B)\left(Q K_{j}\right)^{2}-(R O U T B)\left(Q B_{j}\right) \\
& \left(Q \dot{C}_{j}\right)=(R N C)\left(Q B_{j}\right)-(R O U T C)\left(Q C_{j}\right) \\
& \text { focto }(1-Q K) \text { corsesp to equilit-pototit } \\
& \text { QB is variatle goremery "grow-th" } \\
& \text { RACT is rateconst } 11 \\
& \text { QC in varioule goresmiz"quench" } \\
& \begin{array}{l}
\text { not ue dat fisist } \\
\text { ut late added } \\
\text { To W WR } 77 C \\
\text { isee p. } 10
\end{array}
\end{aligned}
$$

\square
Jous sertic to tan fort
(x)
गH

$$
\text { Ji. } \mathrm{f}
$$

$$
\begin{aligned}
& \text { p. } 26 \text { ravieura Sulits. } 73,77,79 \\
& \text { p. } 26 \text { revieura sunts. } 73,77,79 .(2)(5(7)=68 \\
& (19)(2)(1+n 70 p)- \\
& (8 p)(8100 i)-8(x p)(8.15)=.(80) \\
& i(28)(97091)-(8 \lambda)(211)=(0.1)
\end{aligned}
$$

$$
\begin{aligned}
& \text { 19 te odex á sthon700)" }
\end{aligned}
$$

Tolloning pages revien developmen of prograns WXRTOIC persoze only p. 6
W $\times R 703 \mathrm{C}$ pernoretactive pp $7 \neq 8$
WXR MO6C moregenal : arozpot \quad pp $9 \rightarrow 19$
WXR707C "
$20-27$
WXR 909 C

$$
23-27
$$

WXR 780 C begon aron-sma - bumbites 28,31
WXR 781 C continiwed 1 (35 - $37-41$
WXR 783 C mod. 4 ataded (NESS 38) \rightarrow
WXR 785 C smitan woth ACUBE
व 786 C add AFPOS QEGT 48
Clloymur ioneveld (5) abs BTOC
WXR 791C conetide (5s)
(61) (79)
with $w \times 2882 C, 91 C, 92 C$

Plop \qquad meran.
-8-08 \qquad Fucge
$28-80$ \qquad
3-2
(8)

Clronolegy of WXRTO1C \& subroutines
post atupts were 701C $8 / 5 / 63$ prohim mampreceramn
$\begin{array}{lll}7 / C & 8 / 5 / 63 & \text { passond Rungetuita } \\ 72 C & 8 / 13 / 63 & \text { modof B.W. } 63 E\end{array}$
Lessono from diagnostics:
Printer symbols hy meons of Argus ALF variobles Berman- Laiss 63 E prooides formuny complications not met here \therefore deccibed to write new program w \times R 75 C
Alphammeric words are 8 charateters
\therefore reod with $A 8$ for PROG NO
Aeso various suvall ponits in developnig imput foruats
WXR'TC compried on firot altempt.
9/18/63 discovered trauble due to fact that COMMON vesbang usad, but forgot to dinersion the not use Them.
9/18/63 discoverdenor in Punge Rutta (elatiotomie flow micopplete) stier $450,460 \times 480$ of $W \times R 7 / C$ were micomplete.
9/23/63 finally worked successfully: 701 C with $71 \mathrm{C}+72 \mathrm{C}$ passire elcetrotonno.

Clironology of WXRT103C \& subrontines
10/1/63
WXRTSC new plot sulrontive
ritroduced resealing ly loctor of two when off scale.
praprocessuy stilliin master progrom.
WXRT4C mod of WXRTIC passure Runge Kutta introduced HAFDEL and DELSIX from main program
10/2/63
WXR T3C Runge Kutta for active chain
aho wres HAFDEL and DELSIX eswelles DELT
(minion essors)
$10 / 3 / 63-10 / 10 / 63$
Did consider able polishinge \& addd IFTEST outputs while thyms to correct trauble ultinately trached to foilure of Common.
10/11/63 Recompilel with Arguments. No Common No Equivolence WXR T3C compibled OK, lut diccorered stotanent 480 was incomplete WXRTHC
WXRT5C " ", lut minar goof in vertical grid specification WXRTO3C " " "worked!
10/13/63 gotlocal respouse lut not good spike
RACT $=200$.
$\quad D Z=.5 \quad \mathrm{NZ}=10$

$$
\begin{array}{ll}
\text { RACT }=200_{0} & D Z=.5, N Z=10 \\
\text { QUENCH }=20 . & \text { RINB }=2 .
\end{array}
$$

$$
\begin{array}{ll}
\text { Parto/tranble was that stitemen } & \text { RINC }=15 . \\
480 \text { wos } \\
\text { comporicemplete, such that } & \text { ROUTB }=15 \text {. } \\
\text { consu } 9 \text { were persoive } & \text { ROUTC }=5 \text {. }
\end{array}
$$

0.3RACT inppies that peak $Q B \approx .15$ lut this wosorly an early gress and moy need to be changed.
should be (2.) (QBperh) RACT
$+\left(z_{0}\right)$ QCprob) QUENCH
$10 / 17 / 63$ mineased RACT to 400.
QUENCH to 1000. got larger spipes but slow decline

$$
\left\{\begin{aligned}
G & =1 . /(D Z * D Z) \\
\rightarrow \text { TWOJJ } & =4 . * G+.3 * \text { RACT }+2 . \\
\text { NSTEP } & =\text { TWOJJ } * D T+.8 \\
\text { XND } & =\text { NSTEP } \\
\text { DELT } & =\text { DT } / \text { XND }
\end{aligned}\right.
$$

WXRT3C hot stetemen 480 corsected $10 / 15 / 63$, now hat.
Resulto $10 / 15 / 63$ propogated, but Quench was poor spike stayed up.
142 sec

$$
\begin{aligned}
\text { Here } \begin{aligned}
\text { RACT } & =400 . \\
\text { QUENCH } & =20 \text {. Lu quench did not } \\
\text { RINC } & =5 \text {. feed } 4 C
\end{aligned} . \quad \text {. }
\end{aligned}
$$

$10 / \frac{15}{B} / 63$
increered RINC to 15 .
QUENCAT to 60.
142 sec
got dechiming phose, lut toogrodual
10/17/63 decreased RACT to 200. got low, slow spike

$$
\begin{aligned}
& (5 \sigma \times 5 \sigma)) .1=-2
\end{aligned}
$$

$$
\begin{aligned}
& 93-24=84 x \\
& 44 x, \frac{104}{4}
\end{aligned}
$$

$0,001=T 24901$

21 at DiA18 hecoerown

-2) 2 He Have

$\varepsilon d / 5110$ H

Chronology of WXR 706C a subroutines
10/16/63
Incorporated a umbler of inprovements over 703 C
Geverelized to permit plot us Z as well as va T
Preprocersing for plot is in plot subrontine $W \times R 76 \mathrm{C}$
WXR $78 C$ prosore Rume Kutta, sameas WXR $74 C$ or of WXR7IC
WXR 77C C actue Rngekuta, …... 73 C
WXR 76 C plotrontir works in general for

$$
\begin{aligned}
& \text { plot roukin works in general for } \\
& \text { ARG (VA, VB, VMIN, } M A X, ~ N P L P, ~ N S P A C E, ~ N G R I D, ~ \\
& \text { ABSCIS) }
\end{aligned}
$$

ABSCIS)
WXRT06C formats \& contiols for merenereal situp.

$$
\begin{aligned}
& \text { NTZSTP = NT *NZ + NSTEP } \\
& \text { tends to be } 20 \text { tmies The rumunig Fine risec }
\end{aligned}
$$

10/18/63 tes fated lecane NSTEP $=0$.
added ratement 311 to 706 C itoprerent thios
$10 / 2163$ trauble in 706 C tracal to
NP stile proment from 203 C , which should hove heen changed to NPLT
fixed hy adhing 353 NP = NPLT
10/21/63 worked with

$$
\begin{aligned}
\text { RACT } & =600 . \\
\text { QUIENCH } & =100 .
\end{aligned}
$$

got peak followedll hy slow dechine toplatian
Therofor sevised WXR TIC to stsergthen Quench.
$480 \mathrm{DQ}(J Z, J R)=$

$$
\left\{\begin{array}{l}
G *[A(1)+A(F+1)-A(J Z)-A(J Z)]-A(J Z) \\
+R A C T * B(J Z) *[101-A(J Z)] \\
-Q(E N C H * A(J Z) * C(J Z)
\end{array}\right.
$$

could rearrange to follownoy form

$$
\left\{\begin{array}{l}
-A(J z)\left[1_{0}+2_{0} * G+\operatorname{RACT} * B(J z)+Q U E N C H * C(J z)\right] \\
+1_{1}(* R A C T * B(J z)+G *[A(J z-1)+A(J z+1)]
\end{array}\right.
$$

6 mot,
$10 / 23 / 63$
WXR77C
$450 D Q(1, J R)=\left\{\begin{array}{l}G *[A(2)-A(1)]-A(1) \\ +R A C T * B(1) *(1.1-A(1)] \\ -Q U E N C H * A(1) * C(1)\end{array}\right.$
smimilesly $460+480$
Quta q A A () added
olso $466 D B(J Z, J R)=\{R I N B * A(J Z) * A(J Z)-R O U T B * B(J Z)$
$\left\{\begin{array}{l}-Q U E N C H * B(J Z) * C(J Z)\end{array}\right.$
$467 D C(J Z, J R)=\left\{\begin{array}{l}R 1 N C * B(J Z)-R O U T C * C(J Z) \\ +Q U E N C H * C(J Z) *[A(J z)+B(J z)]\end{array}\right.$ also QB in quenchide eswell as QK

Could weaken antocatalytic tessn
or could leave this t weehen actuel quench by multiplyngy $B(1)$ into it.

Bos may loore reportom perod Finsway.
at peak of spoke $Q B \approx .03$
$Q C \approx .2$ grousto 1.06 in (1)
.89
(1) $) *(1)(1 *+104+16)-1$

10/22/63
A
Successful surn
Su70
onerquenched
$N T Z S T P=4880$
Rungtïe $=218 \mathrm{sec}$

$$
\begin{aligned}
& \text { RACT }=600^{\circ} \\
& \text { QUEECH }=50^{\circ} \\
& \text { RINC }=10^{\circ} .
\end{aligned}
$$

pretty good peak: amplitude ≈ 0.6 down slope steppes thon up slepren.
Plottung format woiks fine, in sans tmo, hn now.
10/23/63 retucel QUENCH to 20. 63706.0006

Did not wark well Trobble minartive Ronge Kitta $\begin{gathered}\text { TMachine faiture? }\end{gathered}$

Time out for Stanford Press Galley Proofs
11/1/63 63706.0007 restored quanch to 50.
prath goot spike
down slope steeper than up slope.
This seally duplicated 63706.0005 except for $D T=.02$ here
Whileitwas. 04 in bothhad DZ $=.5$

This pair demensthates Thershold well

$$
\text { fo } I C=0.2
$$

VAdopoto 102
and thenchimests peck of 565
a peote $Q B=.022$

$$
Q C=.22
$$

$11 / 4 / 62$
63706.0009

$$
I_{1} C_{1}=.2
$$

$.0010 \quad \pm_{1} C_{1}=.1$
here DZ was reduced to 0.2
question was threshold

$$
\begin{aligned}
& \text { RACT }=600 . \\
& \text { QUENCH }=50 .
\end{aligned}
$$

NTESTP $=1740$ each or 3480 for loth
Punary twie for both wos $17 / \mathrm{sec}: \frac{3480}{20}$
fon $I C=0.1$ in ove of ton comperturents $(D z=0.2)$
This is below threshold
VA does not foll grite as fost aa VB
QB rises to pedd volue of .0003 at $T=.05$
$Q C$ slably .00042 at $T=.30$
Cy That time VA has dropped to .0325
White $V B$
white VB

$$
.0151
$$

GCholds. .00042 from $T=.30$ to $T=.48$
dusing which tuie has hoppel to .00013

$$
\begin{aligned}
& \text { VA. } 031 \\
& V B .010
\end{aligned}
$$

at $T=.56$, $V A$ is tasly begmin to chinit gain, olthough $Q B \& \& C$ are stationny

Can estimate near threshold Asudostasdy stale This is unt it lood, nastlung gits abo voulimen

$2 K T=11$	14	18	22	58
$q A=.0944$.0933	.0944	.0975	.282
$M B=.00126$.00123	.00120	.00121	.0064
$M C \equiv .00104$.00137	.00178	.00217	$.016 z$
Tahe $A(1)=096$				

Tahe $A(1)=096$
$A(2)=, 08$

$$
B(1)=.0012
$$

$$
c(a)=0002
$$

$$
\begin{array}{ll}
G=25 . & \text { QUENCH }=40 . \\
\text { RACT }=500 . & \text { ROUTB }=15 . \\
\text { RINB }=2 . & \text { ROUTC }=5 .
\end{array}
$$

$$
R 1 N C=10 .
$$

$$
\left.\begin{array}{rl}
\Rightarrow Q= & 25(.08-.096)-.096 \\
& +500(.0012)(1.1-.096) \\
& =40(.096)(.002)
\end{array}\right\}=\left\{\begin{array}{l}
-.4-.096 \\
+.6 \\
-.008
\end{array}\right\}=\left\{\begin{array}{l}
-.496 \\
+.6 \\
-.008 \\
N+.1
\end{array}\right.
$$

11/6/63
63706.0011

Three coses with $I_{1} C_{1}=.3, .2, .1$ in (1)
Here RACT $=500_{0}$ retued fon proviona 600 .
QUENCH $=40$. selual from porions 50.

$$
\begin{array}{r}
3 * \text { NTESTP }=3 * 1740=5220 \text {; } 5220 / 20=261 \\
\text { actind summinstive was } 2
\end{array}
$$

acthd rummeng time was 254 sec
$I C=.3$ above theschold
. 2 very close to Thesh: difpelto. 09 arsegaind .2 at ${ }^{T}=50$
-I below thesh.

$$
\operatorname{fos} A C=.3 \text { in (1) }(D z=0.2, N z=10)
$$

dipped to 0.163
then rose to peak of 0.595 at $T=.45$

Conclube That RACT $=500$. may be a little too sluggoshy but, first, should compare with I.C. infiele celts of in all ten cpts.

050 -aromenthen $\quad 030 \mathrm{C}=$ TOAR 200t

$$
192=020225 \quad i 02 s y-0421+\varepsilon=2 t 52 T A * 8
$$

उदन: Doweratenono $\varepsilon_{0}=0 I$ E. Nex posantur whant-walal io.

$$
\begin{aligned}
& \begin{array}{l}
280 .=8 p \\
2810=0 p
\end{array}
\end{aligned}
$$

$11 / 7 / 63$
Stock taking today. (pp 14-19
Pulled moderation rum because de
Pulled production run because decided to decrease NSTEP of TWOJJ to take account of QB ant QC values actually found at peak.

$$
\text { i.e. for } \begin{aligned}
Q B & =0.03 \\
Q C & =0.20
\end{aligned}
$$

should get $\lambda_{j j}=1 .+2 . * G+.0 B * R A C T+0.0$ QUENCH

$$
\text { TWOJJ }=2 .+4 . * G+.06 * \text { RACT }+0.4 \text { *QUENCH }
$$

Becouse intend to try smaller QUENCH to permit QK and $Q B$ to grow larger, figure on $Q B=0.05$
Decide to incorporate new cal. in WXRTOTC using O. 1 as coff of RACT. for NSTEP calc.
at present, this will cut compratation time ilholf without lots in accuracy. Hoy seed to review later.
also define NABC = IFTEST -10
to determine print ouprit of $V A Z, A B, A C, V B Z$. This separates print onfrot from plot $D T$. $\therefore 98 \quad(D z=.5$)

Quench could he mode/ less steep by making proportional to V^{2} or to $Q K A, Q B$, lent this will result in loss effective refractory period.

Fist ty simply smaller QUENCH coefficient.
Examine value of DQ for compartment (4) in 63706.0007

$$
\begin{array}{ll}
\begin{array}{ll}
\text { steep slope } & \text { peak } \\
K T=26, T K=0.50 & K T=33, T K=0.64 \\
A(4)=0.294 & A(4)=0.61 \\
A(3)=0.606 & A(3)=0.064 \\
A(5)=0.072 & A(5)=0.284 \\
B(4)=0.005 & B(4)=0.030 \\
C(4)=0.0035 & C(4)=0.16
\end{array}
\end{array}
$$

$$
\rightarrow G=4 \%, \quad \text { PACT }=6000, \quad Q U F N C H=50_{0}
$$

Torpeak $D Q$

$$
\begin{aligned}
& \left\{\begin{array}{l}
4(.35-1.22)-0.61 \\
+600(.03)(1.1-6.61) \\
-50(0.61)(0.16)
\end{array}\right\}=\left\{\begin{array}{l}
-3.47-.61 \\
+600(.0147) \\
-50(.0976)
\end{array}\right\}=\begin{array}{l}
-4.08 \text { passive } \\
+8.82 \text { feeding } \\
-4.88 \text { quench } \\
-0.14
\end{array} \\
& \lambda_{j j}=9 .+18 .+8=350
\end{aligned}
$$

twice $\lambda_{j j}=70$. whereas $W \times R 706 \mathrm{C}$ \& Two JS $=198$. toolarge

 - tele sillos

$$
D C=\operatorname{Dan} \quad(.09 D=10 M 2 \quad, 1=2
$$

$11 / 7 / 63$
63706.0007

For steep pait of slope $(K T=26, T K=0,50) \mathrm{in}(4)$

$$
\begin{aligned}
& D Q \equiv \\
& \rightarrow\left\{\begin{array}{l}
4(.678-.587)-.294 \\
+600(.005)(1.1-.94) \\
-50(.294)(.0035)
\end{array}\right\}=\left\{\begin{array}{l}
.364-.294 \\
+600(.004) \\
-50(.001)
\end{array}\right\}\left[\begin{array}{l}
+.07 \text { posoure } \\
+2.4 \text { peed } \\
-0.5 \text { quouch } \\
+1.8
\end{array}\right. \\
& \lambda_{j j}=9 .+3 .+.15=12015
\end{aligned}
$$

Twice $\lambda_{j j}=24.3$
compresed with TWOJS $=198$.
Narformala goves

$$
T w O J=18+60+20=98
$$

(compare with 70 of peovions poge)
Tak this allows fer larzer B volnea pede becoure of intended sualler Quench.

$$
D z=.2=
$$

$$
8 \mathrm{P}=05+0 \mathrm{a}+81=\text { रुWग }
$$

$$
(8+y \text { arnoed lorminnume) }
$$

$11 / 2 / 63$
Check DQ mi 63706.0009 mi (2)

$$
\begin{aligned}
& \text { RACT }=600 \text {. } \\
& A(2)=0.582 \\
& \text { QUENCH }=50^{\circ} \\
& A(1)=0.562 \\
& A(3)=0.536 \\
& B(2)=0.024 \\
& C(2)=0.142 \\
& D Q= \\
& \longrightarrow\left\{\begin{array}{l}
25(1.1-1.16)-0.58) \\
+600(.024)(1.1-.58) \\
-50(.58)(014)
\end{array}\right\}=\left\{\begin{array}{l}
-1.5-.58 \\
+600(.0125) \\
-50(.081
\end{array}\right\}=\frac{\left(\begin{array}{l}
-2.1 \\
+7.5 \\
-4.05 \\
+1.35
\end{array}\right.}{\text { itichming }}
\end{aligned}
$$

Note that smaller DZ Than in . 0007
causes (a) larger G
(b) smaller $(2 A(5 z)-A(5 z-1)-A(5 z+1))$ iex loss difference lotween neightors. a little later (at tme peak), biggest change would he drop in volue of $A(1)$, resultizs. in malring passire temm nore saeg. However pasorietten is comparable to previous. case.
(5) - pone. Dored in por anen
 $5+0.0=(s)$
$s+1.0=(s)$

deabey
$11 / 2 / 63$ CheckDQ in 63706.0011 in 等 4 . 18
PACT $=500$. 18 I.C.

$$
\begin{array}{rlrl}
\text { RACT } & =500 . & A(4) & =.636 \\
\text { QUENCH } & =40 . & A(3) & =.551 \\
G & =25 . & A(5) & =.564 \\
& B(4) & =.0336 \\
& C(4) & =.127
\end{array}
$$

$$
D Q \Rightarrow
$$

Sin tandy

$$
55 C=\text { TOAA }
$$

$117 / 63$
Plan to compare

$$
\text { I.C. }=0.5 \text { in (1) }
$$

$$
\text { with I.C. }=0.1 \text { in }(0,(0),(3),(4), 5)
$$

with RACT $=600$.

$$
\text { QUENCH }=40 \text {. }
$$

Que, compare I.C. $=0.2$ in (1)
with I.C. $=0.2$ mi all (1)now (10)

If wosh to modify Quinding function
modify WXRフMC \longrightarrow WXR 79 C

$$
\mathrm{W} R \mathrm{R} 707 \mathrm{C} \longrightarrow \mathrm{~W} \longrightarrow 709 \mathrm{C}
$$

bw first test $W \times R 707 \mathrm{C}$ with a ropeat
of 63706.0011 of 63706.0011 for furst virtial condition
-ssuepturas an maly
(1) $2=0,0=, 0,1$
(3), (1) (8), (3), (1) in $1.0=$, , IL NE:

$$
\begin{aligned}
& .098=\text { T0AS stran } \\
& .0 y^{3}=\text { than }
\end{aligned}
$$

(1) in $\mathrm{E} D=$ D.I enotima an?

$$
\text { (J1) } \sin (1) \text { Deo } f_{0} O=0, I=N+2 n
$$

(arstideneso) sist aine (5sestsoi?
$1 / 7 / 63$
WXRT0 ${ }^{\circ} \mathrm{C}$
Same as 706 C eycept that at
301 TWOJJ $=4 . * G+\cdot 1 *$ RACT $+2 .+.4 *$ QUENCH
310 NSTEP $=$ TWOJI *DT +.5

$$
\begin{aligned}
& \text { and } 169 \text { IF }(\text { IFTEST-10) } 180,188,170 \\
& 170 \text { NABC }=\text { IFTEST-10 } \\
& 171 \mathrm{KNABC}=18 A B C \\
& 172 \text { GOTO } 180 \\
& \text { NABC=0 } \\
& 410 \text { IF }(N A B C) 4250,4250,411 \\
& 411 \text { IF }(K T-K N A B C) 4250,420,412 \\
& 412 K N A B C=K N A B C+N A B C \\
& 413 G O T O 411
\end{aligned}
$$

Testrum 63707.0011 \qquad with IFTEST $=15$ same as 63706.0011 first F.C.
*
Reducel running time from 85 to 58 sec becouse rediced NSTRP from 3 to 2
Results differ only in 5th significantfigure of folling

Good looking Spikes Mes of ton with consider slowing gand $\propto A^{2}$
$11 / 11 / 63$
63707.0014

Tour sets of nitial conditions

Spirbemi(1)				
peakempl.	.8788	.95614	.9059	.9425
KT	40	20	55	26
T	.39	.19	.54	.25

Spicheni(2) peakeaupl .9096 41
.40
ditto
.9167
55
.54
Sponte in (4)

$$
\begin{gathered}
\text { peadrampl } \\
\frac{K T}{T}
\end{gathered}
$$

.9537 43 .42
ditto
.9415 56
.55 ditto
all hove RACT $=500$.

$$
Q U E N C H=40^{\circ}
$$

Gord lookny spothes bou folling
phase a little tor fors.
$1111 / 63$
compere $\triangle B+Q C$ of 63706.0012

$$
\text { with :00 } 11
$$

63706.0012 IC $=0.2$ in 5 of 10 upts
peak QK aron 1.70 bint does vany wirthopl. $\left.\begin{array}{l}Q B \simeq .04 \\ Q C=.2\end{array}\right\}$ sang in $3444 \pi h$

$$
\left.\begin{array}{l}
Q K=.65 \\
Q B=.036 \\
Q C=.12 \\
Q K=.82 \\
Q B=.05 \\
Q C=.12
\end{array}\right\} \text { in } 10 \text { in } 7 \text {, } 4 \text {, }
$$

63706.0013 I.C.mi.2 in all

$$
\text { peak } \begin{aligned}
Q K & =.792 \\
Q B & =.047 \\
Q C & =.217
\end{aligned}
$$

compere antiopsations on p. 14

In 77C , statement 480 wos

$$
D Q(J Z, J R)=\left\{\begin{array}{l}
G *[A(J Z-1)+A(J Z+1)-A(J Z)-A(J z)]-A(J Z) \\
+R A C T * B(J Z) *[1.1-A(J Z)] \\
-Q U E N C H * A(J Z) * C(J Z)
\end{array}\right.
$$

(11/18/63)
Iffirot versoon of 79 C , last term becomes

$$
-Q U E N C H * A(J Z) * A(J Z) * C(J Z)
$$

secout version $11 / 19 / 63$ in 709 c modi deleted suppuphows taffprint $450,460,480$ back to 77 C form exapt that $(1.1) \rightarrow(1.0)$ 466 mow $D B(J z, J R)=\operatorname{SiN} B * A(J z) * A(J z)-R O U T B * B(J z)$ $-(A A F Q C H * B * C(J Z)$
where HAFQCH $=0.5 *$ QUENCH. This donuld steghen rise of spike

$$
\begin{aligned}
467 \text { mow } D C(J z, J R)= & =R R N C * B(J z) \\
& +Q U B N C H * C(J z) * A(J z)(T A(J Z))
\end{aligned}
$$

This notas minch as A A in 480 . foll of spitive
$\begin{array}{rl}11 / 18 / 63 \text { firstression, } 11 / 19 / 63 \text { secoulversion } \\ \text { Wodiff } & \text { WXR } 77 \mathrm{C} \longrightarrow \\ W \times R 707 \mathrm{C} & W W R 79 \mathrm{C} \\ W W R 709 \mathrm{C}\end{array}$

$$
\sin 450,460,+480
$$

moke quench $\propto A^{2} C$
gnoppose is to slow folling phese of spike somenthat
in 467 delete the Qpench B contsitintion to DC as superfluona. Did not make $D C$ term propotional to A^{2}
$\begin{array}{rl}N Z=4 & D Z=.2 \\ \text { set up } 6370900014 & \text { with } N T=81\end{array} D T=.01$

$$
\text { Therwise same as } 63707.0014
$$

Therepult was almost symmettical spithe The fost pas of fallurt phase seemed a little slown Op fuisthch nod. Was apriee on ofter this teros, lui frist examine rosults of thin test.
Far eoch case RACT $=600$. RINB $=2$. $R N C=10_{0}$

$$
\text { QUENCHF }=30_{0} \quad \text { ROUTB }=15 . \quad \text { ROUTC }=5 .
$$

$$
\begin{array}{ccc}
\text { A had } N / Z=1 & V / Z=0.3 \\
B & 4 & .3, \cdot 3, \cdot 3, \cdot 3 \\
C & 1 & 02 \\
D & 4 & \cdot 2,-2, \cdot 2,2
\end{array}
$$

$11 / 22 / 63$
Second version seams quite
suitable for well shaped spike

Compare also $V B+V C$ at tine where QK first falla to

Eonlere, for some value of $V A Z$, seconluersion has larger VBand smaller VC than first version. This is chat produces the slower fall than rise.

$1422 / 63 \quad 63709.0015$ ABCD

C D

Consiter . 10 r ofter peate

63709.0014	A	B	A	B
.4709	.49	.29	.54	.31
ferk	.47	.565	.62	.654
$V B$.0126	.0235	.048	.054
$V C$	1.776	1.406	.81	.747

This showz That with necoul upssion, VBisstill larger ot also VC has not grown as lange, to th of whiti contrinute to olomer foll.
\square

\qquad
(0).

Moy want to compromise between
63707.0016 ad 63709.0015
$11 / 25 / 63$
63707.0016

Test eppot of reducuiz QUENCH to 20. in ir7C tocompare with B cose of $14 \mathrm{aw} / 15$ also Bcose of 63707.0014
Shope come oni pretty good. Pratzexceeded 5,0 sligutly flatter

triall of these examples.

$$
\begin{aligned}
& \text { RACT }=600^{\circ} \\
& \text { RINB }=20^{\circ} \\
& \text { RYNC }=10^{\circ} \\
& \text { ROUTB }=15 . \\
& \text { ROUTC }=5 .
\end{aligned}
$$

IC.is 0.3 in all four cptoco
for 79 C noy wout to use smaller ROUTC
for 776 man wont to use smaller ROUTB or smiller Bquanch

$$
\begin{aligned}
& \begin{array}{r}
\text { Try } 63707.0021 \text { with } \quad \text { ROUT } B=5 \text {. } \quad \text {, QUENCH }=20 \text {. } \\
\quad \text { RACT }=800 \text {. \& abone }
\end{array} \\
& \begin{array}{rc}
\text { Ty 63709.0023 } & \text { ROUTC }=2 \text {. y } \\
.00124 & \text { QACT }=800 \text {. q above }
\end{array} \\
& \text { Comparaw. with .0015 RACT }=60 \text {. foctor } 10 \text { sumilen } \\
& 6 \text { : } 709.0025 \text { RINB }=20 \text {. foctoon } 10 \text { layer } \\
& B \text { at } 10 \text { lager } \quad R(N C C=2 \text {. fortor } 1 \text { a siffoctor } 2 \text { longer }
\end{aligned}
$$

$11 / 29 / 63$ Review $73,77,79$
A = Passive TAgrow th - Agrench
$\vec{B}_{0}=S$ tandard $B-$ Bquench
$c=S t a n d a n d C+C$ growth

$$
\begin{aligned}
& \text { inall coses }\left\{\begin{array}{l}
\text { Passive }=G *\left(A_{j+}+A_{1}-2 A_{\phi}\right)-A_{\phi} \\
\text { Stadarl } B=(R I N B) A^{2}-(R O U T B) B \\
\text { Standal } C=(R I N C) B-(R O U T C) C
\end{array}\right. \\
& \text { Agrowth }=(R A C T) B(1.0-A)
\end{aligned}
$$

sin 73C $\left\{\begin{array}{l}\text { Aquouch }=(\text { QUENCH) } * C * A \\ \text { Brench }=0 \\ \text { C growth }=0\end{array}\right.$
in 7IC Agrowth usen 1.1
most Aquench sarme as $73 C$

$$
\begin{aligned}
& \text { Borench }=(\text { QURANCH }) * B * C \\
& \text { Cgrowth }=(Q U E N C H) * C *(A+B)
\end{aligned}
$$

$79 C$ fristression mode Agnench $=(Q U E N C H) * C * A^{2}$

$$
\begin{aligned}
& \text { C growth }=(\text { QUENCH }) * C * A \\
& \text { Aqrowch }=(\text { QUENCH }) * C * A \text { as } \\
& \text { Bquanch }=H A F Q C H * B * C \\
& \text { Csrouth }=Q U E N C H * C * A^{2}
\end{aligned}
$$

$$
\begin{array}{ll}
79 C \text { secorduersion } & \begin{array}{l}
\text { Aquowh }=(\text { QUENCH }) * C * A \text { as i } 73 * 77 \\
\text { Bquanh }
\end{array}=H A F Q C H * B * C
\end{array}
$$

.0021 is hest of 707 series
. 0024 is lest of 709 series

$$
5 A * 5
$$

Note: Threshold may be changed somenthat.
$12 / 3 / 63$
Compernigy 63707.0021 arl 22 with 63707.0014 B
reducury Quarch from 30. to 20. resilled in woder peak suilithat fell is very sifictly slomer thon rise.
(21) realucition Routp from 15. to 5. coused a meare ropil rise ant sightly showed peak. $\Omega \Omega$ alitot this cheracts.
This due to lerger B ialves.
(22) Roeft Bin mines ffom 600. to 800 .
incresed sheivens
Now comper 63709.0023724 with 63709.00153 637090015 B hed pretty good jesel bis finel fall wies to nlow-
(23) redved Routc from 5.to2., this kairs Cleyger as squere shacoes off.
Succeedod in bring spite down mase shopply.
24) Wiglutivin / RACT to 800.
nicreased risuy sate
Sot nery good shaped spitse

Ist compute $V i$ as already provided by previons mentads If extemal leoboge were zero, then conld assupye That onter $V e$ is zero and ontaile nemon, Ve $x-V_{i}$
of Tracellulo ri becouse is in ot uitracellor 12 , becouse peake $V_{i} \approx 70 \mathrm{mV}$ is a larger resistance which coill be regarled os meglgjite for Vi_{i} and V_{m} of Z of T Qlso, it oppoons (siom chedano gordonts records) that the resirstance from surface ta zero contoren (indtfpent) is about $1 / 4$ or $1 / 5$ the resis tance from axpons near bulb conter the zero contons.
(continue p. 2q)
$12 / 4 / 63$
Now biegin to ronghout WXRSOC

At first, worstain at complete fleyiblity of paraneterd. Coued use lorger delt whili imgnelsi is in axom o thon seduce delt once it reackes soma, at lees ishon derbistes areattire Probobly' not veessary when deridrites are passiree.
First tro⿳ cose where dendrites are passine, but try to provide for bokoze path. asont-

Which corresp to ratio of lumped capacitios

* This leads to suggestion offioshng safety factor of propogation of present action oteriliad rvodel. Needouly modify 79 C to pemit a change in one of the μ values.
aspoun of T it wourd be (0.4) 4 Ve toodd

This, if V_{e} doep $=2 \mathrm{mV}$ for open actrabulbar loop might get,

This is aszur thet extrabulbor loop resistance is lorge compared with r_{e} of cylvidrical volume, so thit $\Delta V_{e}($ suppecto dop $)$ is unchonged. An this cose, one would sinply add 0.4 maV to all values of $\operatorname{Ve}(z, 5)$: This is probobly The Cest approximation.

Alternotint is to assme that extiabulbor hops drows enough current to reduce ΔV_{e} (suifec to app) Then this isopuirben to imposing a sted curren alovy re whoch arould conse a linesily apaded drop is. ΔV is reduced to $\frac{1}{11} \frac{9}{10}$ if ebopodds 10% conduct.
Then for the $1 / 5$ voltrage divides, get ve supace $=0.36$ and $V_{e}(z)=V_{e}(z)+0.36+\frac{z}{z_{\text {main }}}(0.2)$
where $\begin{aligned} z & =0 \text { a' suiffere } \\ z & =z_{\text {mox }} \text { deep }\end{aligned}$

$$
\Delta V e \text { drops from }-2 \mathrm{mV} \text { to }-1.8 \mathrm{mV}
$$

But thia complication con be motially neglected.

$$
\begin{aligned}
& V_{\operatorname{elop}}(0)=V_{\text {epo }}(0)+0.36 \\
& \begin{aligned}
V_{\text {elopp }}(z \mathrm{man})=V_{\text {opm }}(z) & +0.56 \\
& =1.44
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \text { or closed estrabulba loop } \\
& \begin{array}{l}
\text { Ve syfoce }=0.4 \text { or } 0.5 \mathrm{mV} \\
\text { Vedepe }=1.6 \text { or } 1.5 \mathrm{mV}
\end{array}
\end{aligned}
$$

First the, let $N J A=4$ with $G A=4$.

$$
\begin{aligned}
& N J D=5 \text { with } G D=25 \\
& G S A=1
\end{aligned}
$$

$V I_{1}=V K=$ intracellular potential on scale of $1,000.9$
$V E O=$ extracellular pit. (open loop) on mV scale
Se.
$44.1=$
let $F D=3$.
$F A=.03$ or coneltry also. 1

Suppose ayou has I 1 core
dendrites hone 5 ucore, bit there is onepricipal \& 425 secondaines.

$$
\therefore \frac{\text { P }_{i} \text { conbineddenlistes }}{g_{i} \text { axon }} \approx \frac{5 * 25}{1} \approx 125
$$

Thus, for axoual z, misht hove $\frac{\partial V_{e}(z)}{\partial z} \approx-\frac{1}{3000}$ ili (z) White for dendiatic Z, would hore $\frac{\partial V_{e}(z)}{\partial z} \simeq-\frac{1}{30} \frac{V_{i}(z)}{\partial z}$ $\frac{r_{e}}{r_{e}+r_{i}}$ is nolouger negligitle.

Let $J=\varnothing$ represios dendritic torminals $J=N$ IJD of nost proxmial denditic opto $N I D=$ unhor of dendritic comportmonts ni row, soy 10 $I=I S=$ Soma companmen
$I=J H=$ ayou hilloc segmen

* NJ = milho of ayonal gitts, indulíj JH $J=\frac{V Z}{N S}=N J A=$ fist ayonal cpif.
Then VEO $(1)=0 \quad \downarrow^{\text {this allows for } V K(1) \neq 0}$

$$
p_{0 . j} J=\sqrt{2}
$$

$$
\begin{aligned}
& V E O(1)=0 \\
& \operatorname{VEO}(2)=-3 \cdot *(V K(2)-V A(1))=+3 . *(V A(1)-V K(2)) . \\
& V E O(J)=V E O(J-1)+3 . *(V A(J-1)-V K(J))
\end{aligned}
$$

$$
V E O(J)=V E O(J-1)+3 \cdot *(V A(J-1)-V K(J))
$$

$$
\text { and onto } J=J A
$$

$$
\begin{aligned}
& V E O(J H)=V E O(J S)+603 *(V K(J S)-V K(J H))
\end{aligned}
$$

$$
\begin{aligned}
& 0 \varepsilon
\end{aligned}
$$

$$
\begin{aligned}
& \text { Thut Nevane encoraing mosun oit sines intive }
\end{aligned}
$$

$$
\begin{aligned}
& 48 \because \operatorname{tin} 2+12=\frac{d}{2}
\end{aligned}
$$

$$
\begin{aligned}
& A D+27=\frac{B}{8}=t \\
& 0=(1) \mathrm{V} V
\end{aligned}
$$

$$
\begin{aligned}
& ((+6)) V V-(26) V Y) \times 80)+(26) 07 Y=(+16) 07 V
\end{aligned}
$$

125563
for first tests, make miniminal revisuous of 70.9 C Q subrentinies
$709 \mathrm{C} \rightarrow 780 \mathrm{C}$ ned utom forinat fin to
Cod(1 change NZ to NJD
Delete old imptcand 3 I associatal misterial tuteod, riod $C A, G D, G S A$, NSTEP, IFDACT,
IFPLAB

$$
\text { wher } I F D
$$

$$
D A B=1
$$

$$
=\text { O miond to th o atuo } 7 \text { posisiue }
$$

- t m mous only passive

$$
\begin{aligned}
\text { IFPLAB } & =-1 \text { mems only plot } A \\
& =\$ \text { meas plot } A+B \\
& \neq \text { nequs plotonly } B
\end{aligned}
$$

meado to he in mipnet of Aubroutine arg soment.
Within 780 C

$$
\begin{aligned}
& \text { NJA }=4 \\
& J S=N J D+1 \\
& J H=J S+1 \\
& N Z=J S+N J A
\end{aligned}
$$

$$
\begin{aligned}
& \text { isce p.30) } \\
& \text { miner of ayourel pt }
\end{aligned}
$$

$$
N L Z=N Z-1 \quad \text { (debtif fom sulert. }
$$

(all theer shoull he aldil to mput argmenton)
Completed frunclung up WXR 780 C
80 C
80 C plot
81 C actur deulertes
82 C porsoredenhites

Notos for progom.
May wed ty restore original initial condition fleyivility VI (202)

* Woy need to pri numbers in col.l of The iupleords, woth Il field and * seod (H)int

Delete sepmete plot for $\left.\begin{array}{r}k T=1 \\ J Z=1\end{array}\right)$

giy nel to milpts is foto (3/2)
Nantseep. 33

$$
\begin{aligned}
& \mu_{i j}=4\left(\frac{3 / 2}{1 / 2}\right)=12 \\
& \mu_{j i}=4\left(\frac{3 / 2}{1}\right)=6
\end{aligned}
$$

$12 / 6 / 63$
Sot a test im , although 82 C hadto be neglected decause of miñor essor.
get antidsonnic propazation to littoc, with block date some.
Block con be attrobited to two foctors

$$
\frac{\cos A}{G A}=\frac{1}{4}
$$

aloo $G D=25$
hence $\mu_{s s} \propto 25+4+1=30$
white $\mu_{S H} \propto 1$

$$
\text { alvo } G_{D o D}=51
$$

Alsospike non-linecity nuay not be hot enangh. Threshold in axon huay lue nuch lowers then offective threshod in soma.
Therefore, for 63780.0002 increase RINB to 4. Qlso, change GD to 4.

If 5μ non-myeliates forer hos 1 num $=\lambda$ thon $/ \mu$

$$
\frac{1}{\sqrt{5}} \simeq 0.45 \mathrm{~mm}=\lambda
$$

Thon
ayoval (IN$) \Delta Z$ of 0.5 cossesp to $\Delta l=0.225 \mathrm{mmer}$ whereas dealiti $(5 \mu) \angle$ z of 0.2 correspto $\Delta l=0.2 \mathrm{~mm}$
ie. $\Delta z=0.5$ ayoul $\Delta z=0.2$ denbitic
Whoch agrees with 63980.0001

for same Δl.

Dendríic Conpermento

$$
\text { Then } \begin{aligned}
& C_{d}=5 \text { per dublito } \\
&=25 \text { for all deubrites } \\
&
\end{aligned}
$$

$$
\text { Then } \begin{aligned}
g_{d} & =\text { for all dendrites }
\end{aligned}
$$

lotween denbintic cpt

$$
\begin{aligned}
\mu_{i j}=\frac{g d}{C d} & =\frac{500}{25} \\
& =20
\end{aligned}
$$

Axonal Compertmods

$$
\operatorname{let} C_{a}=1
$$

$$
\text { let } g_{a}=4
$$

$$
\mu_{i j}=4
$$

suppose copacity o/ soma $=C_{s}$, and that we contreof $g_{d s}=g_{s d}=g_{d} ; \quad g_{a s}=g_{s a}=g_{a}$
Then $\mu_{d s}=\frac{g_{d}}{C_{d}}=\quad \mu_{a s}=\frac{g_{a}}{C_{a}}=$

$$
\mu_{s d}=\frac{g_{d}}{c_{s}} \quad \mu_{s a}=\frac{g_{a}}{c_{s}}
$$

If $c_{5}=4$, then $\mu_{s d}=\frac{500}{4}=125, \mu_{s a}=\frac{4}{4}=1$
If $C_{s}=10$, then $\mu_{s d}=50, \mu_{25}, \quad \mu_{s a}=0.4$
(453) $D Q(J S, J R)=G S D * A(J S-1)+G S A * A(J H) \pm$ etr
$12 / 9 / 63$
test $12 / 6 / 63$ B oversan membory hinits
There are 7 menory bouks avaitable
This was 2000 coords into an 8th.
Chedng bock onearlier Qetal Wemom Mops WKRTOIC $A 703 \mathrm{C}$ where VATP was $100 \times 10^{\circ}$
the progrom seachef into the 4 th bark.
WKR706C — 709C uhore VATP cos 202×10
DQ was 202×4
The progrone reached into Fthe bauk.
ie. A was wewer the limit than A realized.
tuW W R 780 C , 82 C added additional $D Q 202 \times 4$ and addistional BB + BC of this overran linits. for acturie apon with peopere deres

Plon to sone unery seduce dinension of $Q R, Q B, Q C, A B$, $A C, B B, B C$, to anl $D Q$ to $(0,4)$
soploce VATP ly ATZ $(207,0)$ BTZ 20,20$)$ reploce $V A Z, V B Z, V A T, V B T$ ly $V A P, V B P$ (202)
(Ressult was into 5 th boule.)
$12 / 10 / 63$
WxRY81C

Statements 120-244 tahe core of nipnet
250-254 JS, JH, JT; NLZ, NZ
$260-282$ TK antZJ

$$
\begin{aligned}
& 260-282 \text { TK awlZJ } \\
& 311-332 \text { NSTEP } \rightarrow \text { DELSIX }
\end{aligned}
$$

$350 K T=1$ for loop to 500
360-370 set up mitiol valuea
410-4250 NAABC Tocortrol print VAZ ite.

$$
430-450 \text { form } V A T Z(K T, J Z) \text {, } 1 B T Z(k T J Z)
$$

480 if $K T \angle N T$ compute, athonvise goto 520

$$
\begin{aligned}
& 491-510 \text { IFAB } \rightarrow \& 1 C+82 \mathrm{C} \\
& 520 \mathrm{KN}=0 \text { to control frenchno at }
\end{aligned}
$$

$K N=0$ to central fronchnog at 662
for intracillular of too oytracellulorsats
532-550 Print VATZ क V $3 T$ Z
$560-569$ plitos versus Z
$570-650$ plots versus T
660 advance KNluy
660 advance KNI ly 1
662 goto $(700,750,800)$ GN
$700-727 \rightarrow 532$
$750-783 \rightarrow 532$ Tahes cere of VE Fen zeroshamet
70 "For 0.25 betor
"750-783 look for new ingut carda "for
Qlso introduced $A(Y Z) * * 3$. into $81 C+82 C$ This consed logessor

Seenextpoze
(iloty of zero
$12 / 12 / 63$ 81C +82 C apparantly hodtsouble from very large regoture exponeits, to tolre core of this \& alno sovecompitation ting replace
old $465-46 \%$ with followsing old $465-46$ t, with follonerigg
SIC

$$
\begin{aligned}
& 454 D 0468 J Z=1, N Z \\
& 455 \text { ATEST =A } J Z)=.001 \\
& 456 \text { IF (ATEST) } 457,457,464 \\
& 457 \text { ASQ }=0 \text {. } \\
& 458 \text { ACUBE }=0 . \\
& 459 \text { BTEST = B (JZ) -.000 } \\
& 460 \text { IF (BTEST) } 461,461,466 \\
& 461 D B(J Z, J R)=-B(J Z) * R O U T B \\
& 462 D C(J z, J R)=-C(J Z) * \text { ROUTC } \\
& 463 \text { GO } 10468 \\
& 466 \text { DB }(J Z, J R)=\text { RINB* ACUBE - ete. } \\
& 467 D C(J Z J R)=\text { asleforeendroj with } A S Q \\
& 468 \text { CONTINVE }
\end{aligned}
$$

$82 C \quad J z=1,55$

$$
\begin{aligned}
& 464 \quad A S Q=A(J Z) * A(J Z) \\
& 465 \text { ACUBE }=A S Q * A(J Z)
\end{aligned}
$$

Qlso, corse9 781 C की $728 \Longrightarrow 730$ to prooide for ayonal cosessesistonke beñglarges than Combine d dendritic core resistorce. See p. 30 of these notes

Thisisconve horgozfed infroprom by usin $5 z$ nisterd of N Zas indey in par of 452 * root disconesal unitil 12/20/63
$12 / 13 / 63$ WXR781C with $81 C$ \& 82 C quite a fow nuinor ersors still hod to be workid thru. The Ay-Soma-Deand zepuence wes not yet completely cosrect in 82 C
Qlxo topnoid for synaptic excitation \& inthitithon

$$
452 D Q(N Z, J R)=\left\{\begin{array}{l}
(C D H(A(N L Z)-A(N Z))-A(N Z) \\
+B(N Z)-A(N Z) *(B(N Z)+C(N Z))
\end{array}\right.
$$

hore $B \equiv E$ and $C \equiv g$
also for JZ $=J T, N L Z$ also $D B+D C=0$. for $J Z=J T, N Z$ (Notfuially correct until WXR $84 C$)
Replreed HAFQCH with QENCHB The niput control of B \& C in devdrits of $84 C$ wos fhicelly nitroduced into WXR 183 C

Basic format for tort prints is unto $8 x, 14(1 x, F 7.4)$

$$
14 \times 8=112
$$

$12 / 14 / 63-12 / 15 / 63$ worlu Suder shapmench
Qlargel $N Z$ dimonsion to 14
Rerised some formats
Cad 1 mow hos NT, NSTEP, DT Forether
Cand 2 change 1 KDZPLT to LKZ PLT
KDTPLZ to LKTPLZ
ad coupute MDZPLT
Cand $3 \rightarrow$ prit NTA, NJD tegether olelt NSTEP部
Cond 4 reploce VIz with VAZ
Cord 5 unchanged (QENEHA, QENCHB)
IF (NEJ) read REJ, KTA (KEJ), KTB (KEJ) $\operatorname{anf}\left(\frac{B E B(J Z, K E J), J Z=J T, N Z}{(B J C(J Z, K E J), J Z=J T, N Z)}\right.$
Peo symptrici g volues
Getrid of $A C U B E$, replouecith ASQ
add KBt $83 C \times 84 C$ arsmento a kstorint
$12 / 16 / 63$
Test 63781.0004 did not werk hereuse 63781.0005 DT $=0.1$ when

IF $A B=-1$
intented. 01
rado those os 63781.0014 ईे es fuiclled
These uosked, promis the 63781.0015 of ACUBE These wisll worlk. get foster spike.
${ }_{\text {sad }}{ }^{2} .38$
Af firally wish to restore ACUBE To
Heten prognam/ create $85 \mathrm{C}+86 \mathrm{C}$
bin wait o see

* Perhop worite special M21C to tost ond squarg cubez, etc. with
odditerial corintauts

Extracelbular cale vadal have
an option providuy for radial synunetsy torn effec of r co res Use diffeni r value for littoc

M8

$$
+99
$$

$$
10 \cdot 50
$$

$$
10 \times
$$

$$
\left(\frac{1}{2}+8+110\right), 18((2)-8+2 \pi)
$$

$$
5+20+193
$$

$$
\begin{array}{r}
8 \\
\square \\
5
\end{array}
$$

$12 / 16 / 63$
$63781.0014 \quad$ FFAB $=-1$, 81 Cas oup. 36
RACT $=600$. RINB $=30$. RINC $=10$.
Quond $A=40$. \quad ROVTB $=15$. \quad ROUTC $=2 . \quad Q$ remi $B=30$.
$\begin{array}{rl}\text { Prolenin (1) at } K T=9 & T K=0.08 \\ \text { Deng. } & .96397 \\ \text { Peni (2) } & 20 \\ T K=0.79 & .95506\end{array}$

$$
\begin{array}{rr}
V A Z=: 964 & k=9.5 \\
Q B=.5167 & .9696 \\
Q C=.1509 & .2104
\end{array}
$$

in(1)
.1968

Pealic QB is .7478 for $\mathrm{AF} Z=.944$
PeakQCi 2.967 for VAZ $=203$

$$
\begin{aligned}
& 63781.0014 \\
& \text { RACT } 500 . \\
& \text { RINB }=15 . \\
& \text { RINC }=10
\end{aligned}
$$

Qenh $A=40$. Rowb $=150$. Ronic $=2$. Quera $B=30_{2}$

$$
\begin{gathered}
\text { (1) pubo } K=9, T K=0.08 \\
\text { VAZ }=.93035 \\
Q B=.31714 \\
Q C=.17837
\end{gathered}
$$

$$
\begin{aligned}
& \text { (2) } N=24, \pi=.23 \\
& 1 / 17=, 89727
\end{aligned}
$$

(5)

$$
V A Z=.89727
$$

$$
Q B=.29223
$$

37,036
$K T=32 . \pi=.86$
$V A=: 924$
$Q B=.3186$
$A C=.2519$
(4)

$$
\begin{gathered}
K T=50, T K=49 \\
V A Z=.89695 \\
q B=.32267 \\
q C=: 27758
\end{gathered}
$$

63781 cubelversion
.0014 DT $=.01$, NSTEP $=2$.
:.DELT $=005$
$.0021 \quad D T=.02, \quad$ NSTEP $=2{ }_{\text {DELF. } 01}$
$12 / 17 / 63$
Gethongh 63781.0014 t. 0015 worked well, for insifficien ${ }_{63781.0021}$ NT
63781.0021 faited, possi bly locaus DDELT
wis twice os large (10\% dombluwith NSTEPSs.e.)
also, reducet Quench velnes may hare contitibuts.
Note the revised 82 C was used. here
However tioubbled occurral in bo th $81 \$ 82$
at same froit $K T \geqslant 9$, where
thing dial been OK in .00144.0015
PPrepiare 63781.0024 with $N T=181, D T=.01$
qothervaise líke. 0014

WXR 783 C modified to take core of NSP.
Number of antidromac spithes oftr surtial
coudifion To permit inter actuon Io Affercit funcing:
At

$$
\begin{aligned}
& 140 \\
& 2461 \text { otseg. } \\
& 370 \text { etseq. } \\
& 390 \text { etf }
\end{aligned}
$$

ASQ nelation spinkelotoncy $\approx .17$ for ford
spatheleterey $\approx .09$ to ol all dong exof of It to JSied
there doubled
$12 / 8 / 63$
63783.0001 ran lunt was stopped lyoperentor; Seemed to be OK. funt there are in fort errord to he correcta.
(A) at 2069206 NZ not available SoMJZPLT probbly nicorrect
(3) 728 ± 729 neet to hone PA APB addal sesp. (The grodient isprideducilly fortor corE, bu wot the polatial itself) mus ruveld hy. 63886.024
Whan modify can rename 784 , bi first bet on 785 Note: 783, 83484 hone ASQ bu not ACUBE

785, 85 48b till hone ACUBE because ofsuccers of 81482 with 781 in 63781.0024
63781.0024 ran wery well with spine lotency $\approx .1$

VBTZ shows errowers volves creppiy
into $J Z=N Z=10$ cpt. as colce into $J Z=N Z=10$ gpt. as coled progesses.
Ssror reverled at a/28 $/ 7>29$
alos de vidul to miche mior changes S scall from $\sqrt{ } 1 / N=-225$ to $V N A A=225$ olvo charge $-3 . T_{0}-2.5$
arlchage - 0.25 to -0.2
$12 / 19 / 63-12 / 20 / 63$
Slilltroubleshooting WXR 785 C
fixed staterneses 206,714
rearrouged $\left\{\begin{array}{lll}370 & -377 \\ 390 & -396\end{array}\right.$
aso in W$W R 85 \mathrm{C}+86 \mathrm{C}$
changed IF(KRTEST)
o in manifnogran, asrarged that
KRTEST $=0$ unlers IFTEST >80
Then NRKABC = IFTEST -80
$K N R K=1$
KRTEST $=/$ only when $K T=K N R K$
Discorereterror in statem 452 of 86 C indeywas 5 Z where it shoall hove ber NZ
12/20/63
Troble work formato 926×927 at 532 deficiereg of inju o thi fackoge. can be fixed with cormna ofter $2 x_{3}$)

See look latri ly mobnioy GSA sualler
Qloo, mas wou to raose tuseshold $\left\{\begin{array}{l}\text { dicrease RNB } \\ \text { or } \\ \text { micrese RovTB }\end{array}\right.$

$$
12 / 21 / 63-12 / 24 / 63
$$

WAR 785 C now working, hin 5 minutes is notonough to complete all of thereprotion
63785.0001

$$
N T=6 \text {, IFTEST }=81
$$

Successful print within subroutines

$$
.0002 N T=121 \text {, IFTEST }=20
$$

Really same as 63781.0024
exon that now VBZ \& VBTZ are not disturbed erroneous non-zero values for $J Z=N Z$ because 86 C fixed.
Operatorstoppel this before VE call. was reached.
63785.0012 same with $N T=101$, IFTEST $=0$
$\approx 300 \sec$ rumniz tine did not get to end. operator stopped at $J Z=4$ with $K V E=1$ Seams to lone been O.K. up to this point. Get antidromic propagation $1,2,3,4$
get delay because of $G S A<G A$ at 5 get delay because of GSA CGA at 5
Also, see an $A \rightarrow B$ slope change.
Cleo in C set stripling difference
lotion active of poobive dendrites.
$12 / 24 / 63$
63785.0803 $.0004 \quad N T=121$
Here teshing ortholromic derection.
Cose A has $V A Z(10)=0.3$ initially
Care B hoo VBZ $\operatorname{VB}(10)=0.3$
and $B E B=2$. for $K T=\left|t_{0} 5\right|$
Trouble in reoduy BEB was due to fact that

* II \& NZ were not yet defind in progrom. Workd one 004 becun IT HNz
12.25 63 This doy addod clock readrog featrore tofregrom. F WXR 786 c with 81 C for plotsing wxv 7855° coitit 80 C for plotting
$12 / 2663.63785 .0012$
complete \& succersful suar. for $A \& B$ antidrounic
turtherquestions
(1) effed of slowr follnizspike
(2) Jutrotuce $E_{j}=-0.1$
(3) Art ef hizher thremold (trynitreaniz ROUTB)
(4) men wish to provide for plethz intercal differen fiom tolutacton intervil
$12 / 27 / 63$
To save computation time, it may be wort th considering a revised program in which the plots subiontive does riot hone $V A, K A, V B, K B$, ant receives LA ant LB from main progroin.

$$
(248,249)
$$

Main program soto $V M I N=0, \quad V M A X=100$.

$$
\begin{aligned}
& \text { and at } 563 \quad \angle A(J Z)=100 \text {. * VAT }(K J J Z)+1.5 \\
& \quad 564 \quad \angle B(J Z)=100 \text {. } \operatorname{VBTZ(KT,JZ)+1.5} \\
& \frac{566}{\text { also } 620 \& 630} 6+640
\end{aligned}
$$

$$
\begin{array}{cr}
702 & 2.5 \\
703 \mathrm{VMN} & -2.5
\end{array}
$$

708 replace -2.5 with $-: 5$ choir will liter he ult. by 100
*Note (this idea is perfect fly OK. Con may not sane $\left(\begin{array}{l}\text { much tine because the ospual printing) } \\ \text { seems to set the time limit }\end{array}\right.$
 even with miproted 82 C of "Buffering"
$12 / 27 / 63$
63786.0021 fristrymwith
plot subrontitie neglett here clock.
fearmed
(1) Lunnt setrup tabes less than I sec
(2) 33 secs compute Aouly for $N T=81, N$ STEP $=2$ $N Z=12, \quad N T Z 5 T P=1944$
(3) 5 orb plot calls withou subrt. $\approx 1 / 5 \mathrm{sec}$ eoch
(4) To disploy VATZ (12×81) took 13 secs
(5) Zeroshonn, again calcphus VATZdiplay * This suggests The printing tohes nuch noore time than conpritinig.
This wos also form to be truefor plothne with the mext test?
chod this for spithe which geverates an aftoypos.
$12 / 28 / 63$

$$
63786.0022 \text { athally rum with } 785 \mathrm{C}
$$

hecma 81 C not yet available
*
\(\left.$$
\begin{array}{ll}G A & G D \\
\text { 8. } & 320\end{array}
$$ \begin{array}{cc}G S A \& G S D

10 \& 64\end{array}\right)\)| Core | NJA XJD | |
| :---: | :---: | :---: |
| .02 | 3 | 8 |

Propgation belocity foster thon before, os axpected from lorger BA . 04 per Axovalseg.
Aryon sond deloy kery large. 33 ie. urath stmies
vi denbites .03 overoge
Antereshy tha soma spine lator for cose 5 Tharfor cose t. Prequmbbly becouse
so vieor Tureshoed. Cory see on so niear threshoed. Con see on sip which could be accentroted be sicreang thoorh in decseery povic Nouttry Rout $B=30$
Eochplot (NE91) tooh 12 to 13 secz. H Thin te shum Ronductonce goves meteresting \sqrt{E}. esp. intial poz o in dendritic region Note that cose B has surface neg.

12/28/63

$$
63785.0006
$$

uspul orthodromic cesult, althougtr
here the Ge was esronvoushy left on too long.

Node two goops not piched up antil 1/7/64 ATEST wesminervat in mee AASF $1 / 8164$ Basictruble due to erroneons use of QUFNCH in CALL argnant. should be QENCHA in Call arganiǹ for QUENCA in Subrouthine argument.

12/31/63 Wodify Several programs add AFPOS to $83 \mathrm{C}, 84 \mathrm{C}, 85^{\mathrm{C}} \mathrm{C}, 86 \mathrm{C}$ add EQJ

84 C
86 C
shaod aed AFPO's to 785 C 786C $\quad 784 \mathrm{C}$ Revise $81 C$ कchange ?
Charge VMIN \& VMAX in $785^{\circ} \mathrm{C}, 786 \mathrm{C} 784 \mathrm{C}$

Naw 81 C will match new $784 \mathrm{C}+786 \mathrm{C}$ reploce in main poogain sepp 46 LAP \& $L B P$ fo VAP \&VBP seplea NGRD with NSKIP ins sic getrid of calc of $\angle A(K T) \nleftarrow L B(K T)$

SORD (III)
$1 / 2 / 64$
setup 64785.0007
in view of 63785.0006 , here $K T B=25$ mistadels 50

$$
\text { Que } \text { ROUTS }=30 . \quad \text { कAFPOS }=.10
$$

sot up 64785.0023
ni meir of 65786.0022 ,

$$
\begin{aligned}
& \text { here } N T=51 \\
& N S T E P=3 \\
& D T=.02
\end{aligned}
$$

$$
\text { also Rout }=30_{0} \text { क } \text { AFPOS }=.10
$$

Trouble until $1 / 8 / 64$ become Call Arg for $85 \mathrm{C} \$ 86 \mathrm{C}$ had QUENCH when it should hare hod QENCHA. QUENCH is corse for subroutmie argument.
a doptod $/ 9 / 64$ in $W \times R 85 \mathrm{C}$, defered $w \times R 86 \mathrm{C}$ Tentature Condelusion romove ABS F enturely a 455

$$
\begin{gathered}
\text { also } 466 \text { BTOC }=Q E N C H B * B(J Z) * C(J Z)+R \text { ROTB*BGZ } \\
4661 D B(J Z), J R)=R I N B * A C U B Z-B T O C \\
467 D C(J Z, J R)=B T O C-R O U T C * C(J Z)
\end{gathered}
$$

miother words RINC would not he usd.

$$
\begin{aligned}
x & =(10 .)(0)-(2 .)(1 .)+(40 .)(1 .)(.01) \\
& =0-2 .+.4
\end{aligned}
$$

Suppose $A=10, B=8, C=5$.

$$
\begin{aligned}
& \text { Ion } \begin{aligned}
D B & =30 .-(20 .) 68)-(30 .)(.8)(.5) \\
& =30_{0}-160-120=+.2 \\
\text { IDC } & =(10 .)(.8)-(2 .)(.5)+(10 .)(.5)(1.0) \\
& =8 .-1 .+20 .
\end{aligned}
\end{aligned}
$$

$1 / 8 / 64$
64785.0031 first revult ofter fixing QENCITA inarg. Hearned that oflerpoo. laststor long. Thae cave of this volue of B goes nog

Qssess what todo.
Ccon le brouglts doron soover with lezger Povtc
Study at statemen 455 of WXR $85 \mathrm{C}(1 / 7 / 64)$ versoon

$$
\begin{aligned}
& 455 \text { ATEST }=\text { ABSF }(A(J Z))-.001 \\
& 456 \text { IF }(\text { ATEST }) 45 \%, 45 \%, 464
\end{aligned}
$$

Nopsotlem as long as $A(J Z) \geqq \sigma_{0} 001$
butor $A(5 Z)-001$
wero to 464 ASQ is pos, $A C U B E$ is neg.
Suppose $A(J Z)=-.1, \quad B=0, C=1$

$$
R I N B=30^{\circ}, \text { ROUTB }=20 \text {., } Q \subset C H B=30 \text {. }
$$

Then $D B=(30).(-.001)-(20).(0)-(30).(0)(10)=-.03$

$$
\text { i/ } B=-.0005 \text { get }
$$

\therefore Shered hore AcuBE=: 0

$$
-.0 .3+.01+.015=-.005
$$

This meycorrespond to the prospessire ninatioction loursts of spervor t tauglel of oticers, as pointed onttome ty gosdon.
It mornval spike expect that need to nicrese SQENCHB a decreese Idecreose ROUTE

1/10/64
64785.0031 with ROUTC $=2$. \& ABSF was pianwallo optes pote
64785.0032 A
10. butstill showed
two intersting features
I-sumtern is now underdamped
(Cits $2+3$ werestasting to)
ie. iniseref POUTC shortened relingroct. period too unch
II-also ingt. (1) got active ofterpos grow the due to ACUBE neg valung B grow neg.
This in definitely unplupiological

- revised gloC to delete ABSF believe that this shoulf now prerent an at bost greatly limit neg volues of B
Ehfot BTOC opparently wes tocoweak that o ROUTC westoo large, such VAZ \& AB began to climf again when spate hod fallen ouly haffivery

 her.
$1 / 10 / 64$ Dodthis Fodoy 786 C
Note forfuture mod of program chauge PRANGE to 110 . of DSCALB to $1 / 6 / 64$ uersion $0 / 81 \mathrm{C}$ as mina $1 / 6 / 64$ uersion $0 / 81 \mathrm{C}$
but hape VAll + VB misteot of LA thB marg. Coll this 82 C Blandof $80 \mathrm{C} \gamma 81 \mathrm{C}$
o colc JA \& JB dirictly fom VAP + VAP

$$
a 2008201
$$

Thus each colc is done betroon coch printer Enie.
with buffer. saveture, especially
Nood to charge NGRID to NSKIP in argments of insuain frogrom niful formot

Note Soma spike exceeed 1.0 luv was only ove to doso.

HA It is atso intershims that the ayen - soma doloy somelts m Gutating the volue of $C=1$ up aunth lorgan in the Soma than anyturerese. This shoed give lazger optrpos. Also, more cumniatue, ashos ofton been obserned.
This will alsogoul $A B / A-2$,
I would guasa.

$$
T K=.6
$$

Better seluce volue of AFPOS

1/10/64 Compere 64785.0033,34,35
.0033 hat ROUTB $=20$. POUTC $=2 . \quad$ QENCHP $=40$.

$$
\begin{array}{rrrrrr}
-.0972 & -.0048 & -.0967 & -.0824 & -.0837 .459 \\
.0000 & .0000 & .0000 & .0000 & .0800 & .051 \\
.8174 & .0223 & 1.7293 & .1634 & .1989 & .808
\end{array}
$$

oletrotanic spread bade form soma toaxon eyceeds ayounal tives wold Theserfects were at leest paitly due to error not correctit until p. 61

$$
1 / 14 / 64 \text { smmery an of }
$$

In 64785.0036 (milerquenchal) tunberlauped

$$
\begin{aligned}
& \text { ROUTB }=30_{0} \\
& Q E N C A B=40^{\circ} \\
& \text { ROUTC }=10^{2} .
\end{aligned}
$$

Authir cose second spike developed urten first espivie hod fallen to 0.34

Daeto monlerquenchan moly,
th 64786.0037 QENCHB micreaselto 60 .
in thic cese, only soma starts up ogain on itsoam bat. presumbely soma dos becane Povic wes toolarge:
Rec prepagation deaily Ox specondory orthohomer prepgation
du64786.0038 ROUTC nolued to 5_{0}
QENCHB hestat 60 .
ROUTB sett at 30 .
Here Soma secontspite has heonpronented by the sualler RouTC.
\# Qlos seembly orthodrouic in present but con anderoblor delayed it rather subnoxised

$$
1 / 14 / 64
$$

64786.0101 had NSP $=1$

Roure $=5$.
Q ENCAB $=60$.

$$
\text { ROUTB }=40
$$

$$
\begin{aligned}
& K S P=31 \\
& R M B=20
\end{aligned}
$$

conyone dw provoun 30. Tuis slows der o/spitre
Got peconstary

$$
\begin{aligned}
& 64786.0102 \\
& \text { RSP }=61 \\
& \text { POUTC }=3 . \\
& \text { AFPOS }=0.05
\end{aligned}
$$

Mingsems to hove flocked the secondary
od drentidromic
seppbl However, get poculiarly Aequirefurther avolysio
SPK did not ver poor in (2) (1) very poor in (2) peabled 0.34 in (3) ect $\mid \pi=85$ prownakly helped hy som a spoke
from. 33

$$
\begin{aligned}
& G D=\frac{q_{d}}{d d}=G D S \\
& G A=g_{a} / c_{a}=G A S \\
& G S D=g_{d} / c_{s} \\
& G S A=g_{a} / c_{s}
\end{aligned}
$$

$G S A=\frac{1}{8} G A$ implies that $C_{S}=8 \mathrm{Ca}$ $\dot{G S O}=(2) G$.$D miplies that C_{S}=\frac{1}{2} C_{D}$ Ot That $C_{D}=16 C_{a}$

Was hegira to supped that trouble is caused liny $G S D=64$, th this was OK earlier in problem 63786.0022 on $12 / 28 / 63$ Atoverer, spice Atonsomr delay is a lit lory,
consider

$$
G A=8 ., G D=16 ., G S A=2 ., G S D=32
$$

At that time there was no trouble with osallation. ROUT $=2$. Cbokerose to one 2 . as spinefell.

$-6600.28+80$
$1 / 15 / 64$
examie opt.4 of 64786.0102 at $K T=141$

$$
\begin{aligned}
& A=-.105 \quad A(3)=-.0611, \quad A(5)=-.0776 \\
& B=0 \\
& C=.2661 \text { thasbeenfolling }
\end{aligned}
$$

in WXR 85 C at statanon 453

$$
\begin{aligned}
D Q(J 5)= & G S D * A(5)+G S A * A(5)-A(4) *(10+G A+G D) \\
& +\operatorname{RACT} * B(4) *(1 .-A(4))-Q U E N C H * C(4) *(A(4)+\text { ARES }
\end{aligned}
$$

Hereget $(64))(-.0776)+(1).(-.0611)-(-.105)(41.0)$

$$
\begin{aligned}
& +(6000)(0)(1 .+.105)-(40 .)(.266)(-.105+.05) \\
= & -4.96+.0611+4.3+0+.585 \\
= & -5.02+4.88=-.14 \text { hence moveneg. }
\end{aligned}
$$

However, if C were larger, say 4 times as large, then wail get $-5.02+5.7 \approx 7.7$
Now, à KT $=85$, C wose 1.36 t then decayed Once B hitszeno, C is nolouger fed.
Must comsider suder AFPOS \& suraller ROUTC
plan to reruns withow secont sphe 1,20264

12224						
	GA	GO	GSA	GSD	GAS	Shathone he
102	8	32	1	64	41	66
103	8	32	1	32	41	34
104	8	32	1	64	41	66

$1 / 16 / 64$
Comperison of 64786.0102

$$
\begin{aligned}
& .0103 \\
& .0104
\end{aligned}
$$

isvery uiterestruc, lut very prizzhing in Some respecth.
I. Why rhould soma spithele blocked in 103^{3} I \& difprs from lo fondy in $G S D=3$? w 0 , misteal of 64.
II Still not dear uhy men phese grows. If wire. Ther is son theor grow.

Cortirl on this providel by 104, where
AFPOS ves Bero.
Cue clue May need NSTEP $=4$ becuse troublem 102 seans to be relaled co GSD=64. \& paspore etationoms tomrelaled co ito This fusy be a step size esror. V

Thisurastried but mide negligitile change

Rurge tutta
Compuling thine
forlapts Cepprox 23 sec por $100($ (N) * 2 (NSTEP)
$1 / 17 / 64$
Ancrene of KT dimansion to 251
took memory mop into bork 7
also IFTEST $=510812$ workel for 64786.0203
64786.0112 No Secony Spree is identicalu h 64786.0102 excepl fo minciese of NSTEP Rom 2 to 4 Nob tecoundipithe of of IFTEST Roun12 to 15
Corpere VATZ tablesfirst.
Spiche propogation was identical
 ly bere ne spine, the ne -.05 are the more ne filhore.

- in Not dua to stap sige
\therefore stelget undosirable ney.grow th
Comporizon is asoful for gerting affect of secpond spike.

$$
\text { FFFTEST }=0 \text { for } 64786.0111
$$

Deloy $=53-33=20 \mathrm{KT}$ here prevarisly sot $75-33=42 \mathrm{KT}$
$1 / 17 / 64$
deffersfrom 102 \& 112 in Geomity \& ROVT $C=$?

$$
G S A / G A=40 / 8 \quad G S D / G D=320 / 16 .
$$

isoupectot, this shostens ayou soma delay also, troilfe with pugatioly is les severe, ens still present.
Also, here, got both coses, $A \not A B$.
ConeA neggrew to - 0933 in (4) 4 coss shtlgrang.
Cose B muchlers vairily becanse of the passone durdrites.
figget weg occussdin (1)

1/17/64 64786.0203 volideta (rot) Rungethita alsovaidated (evintutioǹ)
Best seen compernoy compartmen (s) of 2024203
penk
hen (5)

$$
\begin{array}{ll}
.497 & .3985 \\
\text { of } K F=75 & \text { o } K T=75
\end{array}
$$

To block, inhth would hone to occn eastion. Soy arond $K T=4$ I
in future use UA for μA.
Define $\mu A=\frac{G A}{C A} \quad \mu D=\frac{G D}{C D}$
Hon $\frac{\mu D}{\mu A}=\frac{C D}{G A} * \frac{C A}{C D}$

$$
\begin{aligned}
& =\left[N\left(\frac{D D}{D A}\right)^{2}\left(\frac{L A}{L D}\right)\right] *\left[\frac{L A}{N / D D}\left(\frac{D A}{D D}\right)\right] \\
& =\left(\frac{D D}{D A}\right)\left(\frac{L A}{L D}\right)^{2} \\
& =D / \partial D)^{2}=\left(\frac{\Delta Z A}{\Delta Z D}\right)^{2}
\end{aligned}
$$

For convemence, could let $L A=L D$
Then $\frac{\mu D}{\mu A}=\frac{D D}{D A}$
But $\frac{C D}{C A}=N\left(\frac{D D}{D A}\right)$
and $\frac{G D}{G A}=N\left(\frac{D D}{P A}\right)^{2}=\frac{A S D}{A S A}$
Suppose $\frac{D D}{D A}=4$ and $N=5 \quad$ then $\frac{\mu D}{\mu A}=4$
$\begin{array}{ll}\text { Supper } \frac{C S}{C A}=4, \text { then } \frac{C D}{C S}=5 & \frac{C D}{C A}=20 \\ & \frac{C D}{G A}=80=\frac{\mu S D}{\mu S A}\end{array}$

1/21/64
the Diff. Equations of hurge Nitta
Statemens 453 of sobroutivion wos.

$$
\begin{aligned}
& D Q(J, J R)=G S D * A(J T)+G S A * A(J H)
\end{aligned}
$$

wheres should liove been

$$
\begin{aligned}
& \operatorname{GSD*}(A(J T)-A(J 5)) \\
& +G S A *(A(5 H)-A(J S))-A(J S) \\
& \rightarrow \text { RACH } \\
& - \text { QUENCH }
\end{aligned}
$$

-QUENCA upon copacity o/ Sorna.
Error meant that Uss was incorrect
E.G.

GA GD GSA GSD
minereturs
conrectuss
$\begin{array}{llll}8 & 32 & 1 & 64\end{array}$
$\begin{array}{llll}8 & 32 & 1 & 32 \\ 8 & 16 & 4 & 32\end{array}$

41	66
41	34
25	37

Suproperer lotterchary GA to UA etc.
$1 / 21 / 64$
fromprovions page for $\angle A=\angle D$
Hone $\quad \frac{\mu D}{\mu A}=k$

$$
\frac{1 I S D}{1 I S A}=\frac{G D}{G A}=k^{2} N=5 k^{2} \text { fo } N=5
$$

Thus, for $\begin{array}{rl}k & k D D \\ N & =5\end{array}$

$$
\begin{aligned}
& \frac{\mu D}{\mu A}=4 \\
& \frac{\mu S D}{\mu I S A}=16 \times 5=80
\end{aligned}
$$

* $~ \angle A A=10$. o $\mu D=40$.
con have following pairs

$$
\begin{array}{rlr}
\mu S A=1 & \text { with } \mu S D=80 \\
\text { or } \mu S A=2 & \text { with } \mu S D=160 \\
\text { or } \mu S A=4 & \text { with } \mu S D=320 \\
\text { or } \mu S A=8 & \text { with } \mu S D=640 \\
\text { or } \mu S A=0.5 & \text { with } \mu S D=40
\end{array}
$$

6479.0111 A neglectod 91 C 992 C

Hence set fornat tine compered with corpritation 4 nin
64791.0111 A

Setep - deped tüie 2 see
tesprsanhing IFTEST15

$$
\begin{aligned}
& N T=201 \\
& I F A B=0
\end{aligned}
$$

IFAB=0

 Get abon 15 tiunse of gsespotiontar for 1 sec Otrual hnye Kutta computation adbd $10050^{\circ} \mathrm{C}$ for NTSTEAP $=402$

$$
1 / 21 / 64-1 / 22 / 64
$$

$$
\begin{aligned}
& \text { wxpralc } \\
& \text { wxp } 91 c \\
& \text { wxp } 22 c \\
& \text { w R R } 82 c
\end{aligned}
$$

Cracial essor m DQ(JS) now-corrected This will be legining. of new series. 64791.0111 sevealed several intershing points
(1) No louger hore touble with growir vegtisty Prosum bly con now nicrese Root C agany pershep to a volue of 3,4015 .
(2) Got Soma block for $\frac{G S A}{G A}=\frac{40_{0}}{8_{0}}, \frac{G S D}{G D}=\frac{32 .}{16_{0}}$

Presumably neal to increase RINB
anfor decrese ROUTB anfor decrease ROUTB
(3) Tallniz phese of spike looks good. Presuriably bectaise PeNCHA $=20$. whidh was smaller than in ablet rievions rums on 786 C where bolue was 40.
(4) Splike ingt 3 (hilbor) folls more shapply thas then (10) (2) less ofterfoo becoure it receives rungh less back-spread from uxt cpto
Cilsonate that same amen of Rame tutte with I FTEST $=0$ Took 139 secs in $64^{\prime} 786.0 \mathrm{III} /$ may depen lyson lecation

$$
\ln 64791.0111 B
$$

look at cyt (4) (soma) whon $K T=41$

$$
\begin{aligned}
& A=.1545 \\
& B=.0016 \\
& C=.0037 \\
& \text { pobshis not ter prow threstoold }
\end{aligned}
$$

probobly not fer fromer twerevold
wherees (2) whon $K T=11$ had

$$
\begin{aligned}
& A=.1705 \\
& B=.0012 \\
& C=.0010
\end{aligned}
$$

$$
\begin{array}{ll}
16 & A=.3722 \\
\text { (reorperkini(1) } & B=.0117 \\
& C=.0097
\end{array}
$$

Set up 64791.0211 with ROUTBraduced to 20. abs ROUTC raised to 3.
$\begin{aligned} & \text { Olso setup } 64791.0312 \text { with abowe phes RINB }=30 \text {. } \\ & \text { Po } 0313 \text { with wor requer vatue }\end{aligned}$

$$
\text { P4 } \quad .0313
$$

which wea regider value bofore 64786.0039

alttree hovesome Cort 5

$$
\begin{aligned}
& \text { RACT }=600 . \text { RINB }=20 ., \text { QENCHA }=20 . \\
& \text { ROUTB }=40 ., \text { ROUTC }=20, \text { QENCHB }=60, \text { AFROS }=.05
\end{aligned}
$$

all three block at soma "1." have prak in (1) of .8969士1 at $K T=17$

$$
\begin{aligned}
& .8969 \pm 1 \text { at } k T=17 \\
& .8926 \pm 3 \text { of } K T=24 \\
& \hline
\end{aligned}
$$

.OI11 has pedk ni (3) of .8678 at $K T=33$ whou $V(4)=.1172$

.0112	11	.8600	11	39

Which agrees with nituiture notion that the denlrites offer the lorgest input conductonce
lood to Soma in $.0112 \quad\left(\right.$ Seep.62) $\frac{\text { USD }}{\text { SSA }}=64$. neyt lorgest GD in. 0113 least GD
How close to threrhold was . OIII

1/22/64
Jusget idea fri a strchastic model of narond brich patcom. Could he use to apploze Monte calopfoshiong the sffects oftedoppert driectional bias ofoflerenctyariances in lranch levzths of Ef urcotim petters. Celso, at hisis who led to Trisitgr it cam be used to test to who exteñ larger bauches otrees are mare probobly cut off than areshort ones.
Moy ned to use $\theta, \varphi, r \neq x, y, z$, or porsibly car get acsoy withlorly one Using $x, y d z$, the pitterm, in $x+y$ ouly conel, bl plott? to silharte for dyfored thizmars of slice. This dorellall is properly plamed. uned. plolting
This is mothod for gettrigs a model of The distritution that in timicatad of exterto of sty finite saple for vorld he ettemely finite, for finitoshre Stockastic Model of Densistic Branchny Distidntions

Consider mobibility related to $\sin \theta$

let $\theta=45^{\circ}=\frac{\pi}{4}$ le mos probable, let $\theta=0$ or 90° be zero probditets could consider $p \propto \sin (2 \theta)$
Butarlow would use equal prob. A go through a dost.

1/23/64
Tallat with ferry 76037 low in g. Jolnsan's grave
He hes subroutinios veeld for Nuatte corlo opplooch He thoug plan wes foonutle liw he da fritity busy. He thougft there uniglit he a subscripteng poblem, to specify prandes. Honewr vy solution is to sote the pollon's. Ealf hrand poist will hone four velner attadel to it poum worl four

$$
\text { shere IP } \begin{aligned}
& \text { If luy of Parent } \\
&=\text { value of } K \text { for parent bravehpoint: }
\end{aligned}
$$

Coned let soma be a proint.
Conldsperfy meon tvachionce for

Thist toy both hancles midept ofeoch
Ther-specify θ by mans of $\theta_{m}+V_{\theta}^{2}$
let φ he uniform dist.

Set up some production rum es
I Colby card with 5 in col. 8
II IFTEST $=0$
III NPLT $=9$
IV IFVE $=1$ CORE varies

Othenoise as before
.12111
. $\$ 4111$
.1413
.1513
let CORE be 0.1

$$
0.05
$$

$$
0.05
$$

$$
0.05
$$

Try.
.0612 with F.C. of .06 in the dendrites.
.0613

1/27/64
letost properens outhie summery of twelve $6479 / .011$ t thru $6479 / .0513$
Got complete soma bock in . $0111, .0112, .0312, .0412, .0512$ $.0113, .0313$.
.0211 got soma spike at $K T=62$ for activie denhento $g K T=80$ for
The loter soma spithe sefléted while The earlisi one did not. This repperenti a special set of aricums toros
 some spithe at $K T=111$ for otwe deudrites. perphal deubrites spited slighty lopere soma.
.0511 proves that USD/USA the same gives samerexult.
.0413 somaspohe at $K T=82$ for active dendsites blocked for possirie dendites.
.0513 sona spite of KKT $=132$
1/28/64
.0612 hodreridualfail as vitial contition. soma spiki at $K T=35$. Noosflectod spitine (tora)
Bert woy to prevent reflectel antichomic io to avoid long latancy from ifillor to Soma.

To help avalysis of extracellular pots. note the KT balues for spire peehs of intracellular records Son
cptes (1)

| 1211 14 21 29 | $A 63, B 81$ | antidrom | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | $B 113$ | $B 108$ | $B 97$ | orthorhom |

A151. A144 A139 osthodrou.

1/30/64 Jodkng over protuction owpur
. 1411 soma extracellulerwos $\sqrt{ }(t,-)$ becouse denbitic perpheryfried lofore
soura.

- 1413 soma extracellulor ors
($(-, t,(-)$ becanse soma frod suall estinnalng. corresp. to the seffeded orthodromic
.1513
dendriter perplam fires furst.

duftole dexpecorpo te
- 1211 CoseA hos good dendritic Somaspihecose A $\operatorname{cose} B$

iNital cell dentritic lateng with distance ≈ 1 usec /nim park nog. tocell Gody liger dropp to $\approx 1 / 2$, at level hoffuy to
$: 121$ for $K V E=2$
(4)
(6) (4)
(8)
periturepeck
(8) (9)
$+030+39$
$61 \quad 62$
prosone dontintos

$$
\begin{array}{ccccccc}
\mathrm{KT} & -1.61 & -.79 & -.39 & -.15 & -.01 & +.04 \\
\text { ampl } & 80 & 86 & 92 & 97 & 104 & 112
\end{array}
$$

$+.30+.35$
$80 \quad 80$

1/30/64
Conclusion from study of Production Output.
(A) Extracellular Pots with external consuctave pooh (is. KVE =2) are necessary for fitting

Both passunet active cores convert the leading negativity seen near the son n level to a ladino positiinty at the superficial
levels. This thus the core for mitral cells. levels. Thistrus the case for mitral cells.
(B) The anoinolons comprited results where, beconse of very long hilloc-soma delay f we find dendrite periphery firing short ty the leodry potential at soma' is poo. rotter Then neg ii $\uparrow t$, -diphase, (compared with -, + diplowi when soma fires first) This does not correspond to mitral cell data.
Therefore, should for the present seek sets of conditions which reduce hittor - to soma deloy, suds, dendritic facilitation.
(c) In problem $6479 / .1211$ the entracelluber amplitude decrennento too mich with distance for pensive dendritic case of too little with a chris dendritic case
sect 4 t un comparison with mite al all (decrements $t_{0} \approx \frac{1}{2}$ over $\frac{1}{2}$ dis tan however, here $\mu D=16 . \therefore \Delta z=1 / 4$ and $5 \Delta z=1.25$, which is trobbbly too long for initial cell dendrite.

23 $3^{\mid 64}$
$.0632 B$ Rnng (lutta tort print.
Violat orcillations op debelop durnizy

$$
K T=20
$$

trylorgen NSTEP
Trouble protolly due to USD $=160$. laviog ton large for stop size.
(c) contrinued. \therefore decide to rerum with $\mu D=64$.
to corresfond to tolal shorter $4 / \lambda$.
Resulted from 64491.0631
Blodvod. As soud. $\begin{aligned} & \mu A=16 ., \mu D=640 \\ & U S A=20, \mu S D=160 \text {. }\end{aligned}$

Fwice previons
64991.0631 (obowe) bloched at soma.
64791.0632 A differed only in $I_{1} C_{1}=0.1$ in the
dendritic compartments.
Here, soma was mivodad withon deloy.
Fine hifoct, entire denbisitic sistom piredsymeforononsly
hecouse O. 1 proved to le aboni Threshold.
Howerer, Compritation Clew up at $K T=21$
Put in a resum with IFTEST $=1902381$
Pasnive cose
got thra with deloyed somasspine ($K T=68$) whoch seflected orthocromically
Also, rood rinto dendrite was less decremental baseuse of shorter Zlength.
as espected.

\square

 0. DS 06 a (intimatiod
.0622 7.Civas 04 misoma $4 D$. actuve cose soma spike ot $K T=51$
sellected ortho faile seflected ortho failedo.

1/31/64
Boiktiodr to look at 64799.0612

$$
\begin{aligned}
& 613 \\
& 712 A+B \\
& 621 \\
& 622
\end{aligned}
$$

In 612 , first tried I.C. $=.05 \mathrm{in}$ somaq deubrites. Thiswesfor 8. 32, 4. 128.

$$
600,50, \quad 20.20 .3060 . .05
$$

same os. 0512 exception He I.C.
which ihod Floched with somapeak $=.054$ actue cose nitaded soma withorly slytit de loy. too soon to pernit reflectetortuo.
passone cose bloched woth soma peak $=.0985$
.0613 simitarly related to .0513 8,32.8.128.㞰 $=.05$ in somac dendites.
acture soma spibe at $K T=32$ comperdwith 132 toosom to permint reffectido the.
posone cose Blochedunith soma peak $=.1486$ compred with. 1004
$0.772 B$ with secondstumuly et $H T=51$
Did not grow full sizet dol not propogate becouse ef refroctory pewod.
.0621 10. 40. 2. 1600 with $F C=.05$ misoma क D.
acture cone soma spikeat NT $=38$
too soon to perhint reflectot or tho.
$2 / 3164$
Tronble presumably due to $650=160$. Could als itry with USA $=1$, USD $=80$.
shorp dendritic dectrotonic viewolspine whid deremants pon 0.86 the 0.43 with a steody latency shift.
good looknijspite

1/31/64 $2 / 3 / 64$
Now series 64791.0631 etseq.

$$
\mu A=160, \mu D=640, \mu S A=20, \mu S D=160
$$ 600. 50. 20, 20. 3. 30. . 1

seep. 10 Thiskloched at sorva for both acture \& possive dendrites 64991.0632 A I.C. $=0.1$ in alldendritic opto. case of actrie dendrites blew up, KT=20-21 cose of possine
areftects ortho lospike at $K T=68$
anpl .8525 $64791.0632 B$ got same sosult with Rngikutta privit. Need to retest with NSTEP $=4$
64791.0633 IC $=.05$ in all dendritic oft. actrie cose blew up with soma spike of $K=42$ possive coseflbeked.
64791.0634
umistoro (5) passone only. súnitar to
$g=0.2 \mathrm{mi}$ (5) With $\varepsilon=0.2$ nides (6) from KT $=1 t_{0} 30$
Got soma spike at $K T=46$ ampl. 8574 too early to produce reflectel orthodromic
64791.0635 paponeouly sainier I.C. of $f ~$
atterred Emesice 500. 30. (150) 20. 3. 40. . 1 Gbtained a wer steoglystate in soura which fiñally, ly $K T=100$ was stanting to take of
both of the e plower kinetics
parented Slow up.
$2 / 3 / 64$
(64791.0636 ative cess only Good loohning spinete, soma osptiat 635 syuchronoub derbritic spike
64791.0637 acture cose orily

* This prenented Wlow up
synchoudus spite at $K T=19$.
Plem ner sesies
.0641 seme ar .0632 with USA $=1$, USD $=80$.
$.0642 \cdots$ with NSTEP $=4$
.0643 sine as .0633 with NSTEP $=\frac{\text { K4 }}{1,}$
.0644 lite .0634 with E nisteral. in (5)
.0646 leh. I.C. .0. $0264,006,208,16$
. O647 whe 0637 exapt.
- 0648 sarveas abore with reversed
.0649 didiritic siquence

WXR82C modification -
If $J A-110$ is stell poz, set $J A=110$
If $J A+110$ is still neg, $\operatorname{set} J A=1$
frollcoses of JA + JB
WXR 7a/CMot. to set $N T=K T: / V A Z(J 5)>5$.

Expe Euntrome o $.0646-.0649$
ploduction ram will confiru this.
$2 / 4 / 64$
6499.0641 blow up was perentad hy NSTEP $=4$ got synderonons son a dend sitica
.0642 got How up mispite of $U S D=80$.
bearyp coued verylong time in plotterng Sulrowhin ix R 82 C to prewen this Wheriniw ung rum a secent thic on $2 / 4 / 64$ with some (4) (40y) ount. .0643 mer wroo reacked.
64791.0644
porsineouly goodsome spine at $K T=41$ compmew with. 0634 (KT-46) which hed lot ot (s)
64791.0645
poswre only: deloyed soma spithe at Ki= $=100$ compor woifen. 0635 stistate wwolk hat fats

It looks bike hotha pasmiters should he csed for the boisine dendictic cose, and coober parapueters shoned be used for the cectru deubitic caze, toge f suitable
eytracelular po

Quthorizing Nomo to fospll l. Joluson $2 / 3 / 64$

- Proporing detaibo f nuemo 2/5/64 Ditioed Memo dated $2 / 10 / 64$. Mot woth ferm Forlow + Betly Garler $2 / 14 / 64$
$\mathrm{C}_{n} 3 / 9 / 64$ theirprogsam sems to he worbury exceptfor a bug in adopting to plotter.

24164
soprbatitop. $65+66$
Question of whether to doubly videy (J, K)

$$
J=\text { order of bouch proint }
$$

$K=$ indeywithin that order

$$
\begin{aligned}
& X(J, K) \\
& V(J, K)
\end{aligned}
$$

$$
\begin{aligned}
& y(J, K) \\
& z(J, K)
\end{aligned}
$$

$K P(J, K)$ gones Kvolue of perent whose J velue
IFC (J, K, L) is neessasily bne les the here. Bro if not aw ly plane mor midey L I ifce ly plane for midey L

$$
\left.\begin{array}{l}
X C(J, K, L) \\
Y C(J, K, L) \\
Z C(J, K, L)
\end{array}\right\} \begin{aligned}
& \text { cordivatos of intersection of } \\
& \text { inito } x(J, K), Y(J, K), Z(J, K) \\
& \text { with plane for videx } L
\end{aligned}
$$

Dimension $J=10$

$$
2^{5}=32,2^{6}=64,2^{7}=128
$$

$$
K=\text { sathes large }
$$

Cilesmatively NTRUNK = mulve of traniz NQRD $=$ Arimber of ordersof roucling
$\operatorname{NBR}(1)=$ NTRUNK
$K A(1)=1+1=2$
$K M(1)=1+N B R(1)$
$\frac{N B R}{}(2)=2 * N B R(1)$

$$
\begin{aligned}
& K A(2)=K M(1)+1 \\
& K M(2)=K A(2)+N B R(2)
\end{aligned}
$$

ete to
$K M(N C R D)$.
(5)

$$
\begin{aligned}
& \text { 2/4/64 for NTRUNK }=6 \\
& \text { KM (NORD) }=1+6+12+24+48+96+192 \approx 400 \\
& \text { GONTRUNGF10, get } 1+10+20+40+80+160+320 \approx 641
\end{aligned}
$$

futhis cose, dimersion $K \approx 1000$
need

$$
\begin{equation*}
x(K) \tag{K}
\end{equation*}
$$

KFP(K), optional KDA(K) KDB(K) $\}$ daughters

$$
\begin{aligned}
& x \cup(K, L) \quad L \rightarrow \hat{L}(K, L) \quad L T
\end{aligned}
$$

$$
z(u(K, L)
$$

Cale. NBR (JORD)
KOA (JORD)
KOM (JORD)
$\operatorname{KOM}(1)=1+\cos$

$$
x(1)=0
$$

DO $(1)=$ गथR $)=1$, NORD

$$
x(1)=0 \text {. }
$$

$$
K O A(1)=2
$$

KOA (J) KOM $=K O M(J-3)+1$

$$
N B R(J)=2 * N B R(J-1)
$$

$\operatorname{KOM}(J)=\operatorname{KOM}(J-1)+\operatorname{NBR}(J)$
Totalumber of banches \% lrmerso $=K O M($ NORD $)$ -

$$
\text { Try USD }=640
$$

for athine cosety, $U A=8, \cup D=16, U S A=$
for purine cosetry, thy sinilai to. 0644 Somentat tho E orlike. 0647 with E modestringes
$2 / 5 / 64$
Thouglts

$$
\begin{aligned}
& .0630 \text { +6440 } \\
& .06 \text { geices }
\end{aligned}
$$

(1) If trie geomety is as unfabroble as in currons calculd tious, it seen that antidronit iñoby on nimis depend uppoir dendritie focititahón.

Hso, then deppthezra shoued relnce the probobtility of ritasion.
(2) So for rothus bobles like an A
exop positly soma spitre nu. 0645 porsone denbritas, bubmax,

Mayke need higher knietic threshold
Moyke ned tojuggle $\frac{\text { USA }}{\text { UA }}$ ratio Conceivaly need sema hineties deppow porm anoval lemetres, livi reserve this for lasto
(3) For mitial cell stracellulars, it loohs like the bos possive dudite case is with hot knetcos and a short dendritic tree, whereos best active deviritic cose is with cooler kinetiés and a louger devdriti tree. Need to compare the two hest coses.
64791.0656 will be simtable for a full scole rum of hot possine.
64791.0651 not quite suitable for.
fullscale rum of
becoure dendritic.
becoure dendrup firesfios
Thentrud 64791.0658 with I.C. $=.05$
Torray a delers. of got 100
long a delay.
Noed to retry aboitrive $64791.0659 \quad 1, .08, .06,04$,
also.0.0660 .08 misach

21564
Pepare $64491.0651^{2 t^{3}}$ NT20t
$=$ NPLT $=2, ~ \angle J Z P K T=2,1$
3 \%. 16. 1. 80.

4,5 \& 6 line 00646 eoolluriotis
.0652 Same except $U S A=0.2, U S D=16$.

Poporedso 64791.0655687

$$
N E J=1
$$

Cind 2 liheobore
$\operatorname{Cos} 3$ 16. 64. I. 80.
$\cos 4$ two doffren I.C.
Cois hot hinoter
Cad 6 twa difpren E sits.

Dy $J z=6$, both are ghiftes to sight o attonveted passine is nuoreatlensatod
Theneshow moy stsith is difperna, we woull he her-l to ted fo thi exper mentally

$$
\log \sqrt{z}=9
$$

pecters of $I Z=9$ are renersed con a same tines as thore $\overline{y z}=4$

2/19/64 succesful production suns
64791.0666 passurue cose (hot himetics)
extracellular plot
(perpitly satisfactory as it was)
64791.0669 actine cose (coolkiñefics) extracellularplot
(toomieh soma deloy

* neds to be serin for eaklier soma spothe
- hoveres mishep et O.k.

Gordon Thinh that both fit data eqvally well. Sometwines dita wore lohe ore, sonuetmes nore lohe others.
Both twrnonen Their estracellulor batween sorna level I peripheral
Essentiolly ssartallefor peper. Perhapos shouel get A+ Brin both cese?
Noyte progsom shoued hove option of skipping the estracellular withous shunlny? Complete poper will compere wotaly oft:A wist optain B

To add gout extracellular computation to program Om ongnial dimple hypothesis

$$
\begin{gathered}
I_{m}=\frac{V_{g}-V_{e}}{R_{d}}=\frac{V_{i}-V_{g}}{R_{m} / A}+A C_{m} \frac{d}{d t}\left(V_{i}-V_{g}\right) \\
\frac{R_{m}}{A R_{d}}\left(V_{g}-V_{e}\right)=V_{i}-V_{g}+\tau \frac{d}{d t}\left(V_{i}-V_{q}\right) \\
\left(y_{V}=0\right) \quad \beta V_{g}+\tau \frac{d V_{g}}{d t}=V_{i}+\tau \frac{d V_{i}}{d t}
\end{gathered}
$$

However, for $V_{e} \neq 0$ ail not constant, get

$$
\operatorname{get} \beta\left(V_{g}-V_{e}\right)+\tau \frac{d\left(V_{g}-V_{e}\right)}{d t}=V_{i}-V_{e}+\tau \frac{d}{d t}\left(V_{i}-V_{e}\right)
$$

elbe,

$$
\frac{\dot{z}+\beta z=\dot{y}+y}{\dot{z}=\dot{y}+y-\beta z}
$$

$$
\Delta\left(V_{g}-V_{e}\right) \simeq \Delta\left(V_{i}-V_{e}\right)+\left\{V_{i}-V_{e}-\beta\left(V_{g}-V_{e}\right)\right\} \Delta t / c
$$

Behove twill thy this for $\beta=2$ and $\beta=10$
This will probich work lin zing fore both promitad out that, if needed, a better method cooveld ceo

$$
\begin{aligned}
z & =z_{0} e^{-\beta t}+e^{-\beta t}(y+\dot{y}) \\
& =\left(z_{0}-y_{0}\right) e^{-\beta t}+y(t)+(1-\beta) e^{-\beta t} * y
\end{aligned}
$$

which hos the merit of getting sid of \dot{y}.
ire use that $e^{-\beta t} * \dot{y}=y *\left(\frac{d}{d t} e^{-\beta t}\right)-y_{0} e^{-\beta t}$
$2 / 19 / 64$ (might)
got idea that both gient aytracellulor कt a non-domidal epsp could he explained on the hypothesin of a permanently low sesistart syneptic plaque: E,M. shows a plaque of very ceor apprexinateren This could conceivally be a boching toze ther of noubriones to "lae up holes" aisl vantairs an onespresen low repistance. When both prea post. Synoptic neurons are at rest, ro cursw would flow Thra this chamel. However on offorent imprabse approoches endingg it opaing a lou sesistance path A crecter a pot. dropacross oharnel. The resulthr gorvert flow would cause the epsp depolarizafich insarsititity could well result from high core repis targe of tominal stex plent low. sofoty foctor do to presynoptefronding.

When a nicrodetrode gets wory close, it nuay sort of seal orto er very close to such a plaque. Thus it is leadrigy Froan a small potch of "posine" "nembrorve which dos a low (shut) resistatice, bin posxity no mal Cin. Thus, highresistice to volune is loss necossory than in The eartier explanation.

Mewtioned to Gordon $\approx 2 / 25 / 64$
He thouglit that pleque is more often thaigh of ablugh reastars lie huer of no evitcnce, offhor, agaisit idea here.

Que test of idea is whether gion extracillulans are ever recorded at surfacez which hadse no knobs.: gordon nicutionsed some coses of giont extracell in line woth this. Wostet croyfish, or aplysia or goldfish
SAndy of duromatolytio cells mogldt hove value. Study of minature epsp migh hove value. EMets of applied const. curren ropuri very corful cerisitatation o/ geonetras.

Fusther thorghtis on this. Key idea is low resistan plaque
What hood of tests t one cut cut offtesmmals, this showel run the soma down. Mug be relatod to cluromatatysis of shramhen dendsites. Suppose plogre wedre esp permeable to KH, Then dger O).rnobs hooued renelt in Atlosp \& positly. * sides coned concuivably he a $K+$ starage (lutpa).

Miniature opsp could le due to nistalulty of widivodual terminals. Reckels Kat's paper. Does he hone evodence for pachets?
Note: plaque droos ano curren as longas presynoptic shoft thas resting pot. Suppese solna is fring. Thon somaniterior goes (1) and do set pat drep acrom phaque of somecurreit ciell flow, hnd noubrave of core resis tance of shoft would notre cousiabable load. Nizht modice suffiain catele tre sterus a termind shopt to setup mipulsiondure hone doubts. This is a crucial point bec cuse coovel cane same * presgustir nepactorimest the would he non-homo-Syneptic.

Tusther thoizlats.
Does this Scheme hove anyy implicotro's for mituibition? Not recessarily, hovener
(1) inholv. Could result from secalinig or plugging plaques
(2) intiv could sesult from blockng inpulse upstream
(3) Con one juggle Equitic Pot of plaque shunt?
(4) tuhit could he damically rindued Gashefore.

Suppese mitititory presgnoptric shoft diffescell from exutglory one. liy not hoving an mimulse, continctonce. Having only a high contuctonce. Tu that cose, the high Atonductonce of Shoft viseries with ai hogl Kconluotavoc of plaque cond acti lithe a patct. Culy grestion would he how to get hogh K condultance in spopt? io there any merit to idea of a bock if offerew lesuminal banchog is too pofuse: fr my mimpilse uodel, the oftermath of subturesh. Stur con sonotivis Le poosistarn (C)-Cheh into thi further. Als this idea workas, Eenhoze conld ruith to g euduryo by a charze in sofety foctor. This would hove mony intresting consequences.

$$
\begin{aligned}
& \text { for } b=4 b \text { ard } x=b \text { get } \frac{1}{2 \sqrt{2}}+\frac{3}{2 \sqrt{9+1}} \\
& =\frac{\sqrt{2}}{4}+\frac{1.5 \sqrt{10}}{10} \\
& =0.3535+.4743=.8278 \\
& x=\ln 6 ; \quad h=12, x=2, b=3 \\
& \frac{8}{3 \sqrt{4+9}}+\frac{10}{2 \sqrt{100+9}} \\
& =\frac{1}{\sqrt{13}}+\frac{5}{\sqrt{109}} \\
& =\frac{1}{1.323} \\
& =.2770+.479=0.756 \\
& \begin{aligned}
& x=b / 2 ; l_{n}=8, x=1, b=2 \quad \\
&=\frac{1}{2 \sqrt{1+4}}+\frac{4}{2 \sqrt{5}}+\frac{7 \sqrt{2 \sqrt{53}}}{2 \sqrt{53}}
\end{aligned} \\
& =\frac{1}{4.472}+\frac{3.5}{7.28} \quad \frac{1}{7.42} \\
& =0.224+.480=0.704 \\
& x=\ln / 12 ; h=12, x=1, b=3 \frac{1}{2 \sqrt{1+9}}+\frac{11}{2 \sqrt{121+9}} \\
& =\frac{1}{2 \sqrt{10}}+\frac{11}{2 \sqrt{130}} \\
& =\frac{1}{6.324}+\frac{5.5}{11.4} \\
& =.1581+.484 \approx 0.642
\end{aligned}
$$

2/20/64
In connection with revising popes on
aithen's data with helpol cordon, hodoccosion to work ont an integrates average for the trunks lost or obscured by the soma.

$$
b=\text { trueralius }+E
$$ - shore E length of unsordable protub-ance a sisilhonette allowing abs for trunks shadows,

Coorg as center lies in the h range, we hove from the Ceppendix of the too year old dillo, that The fraction soon can be expressed

$$
f=\frac{x}{2 \sqrt{x^{2}+b^{2}}}+\frac{(h-x)}{2 \sqrt{(h-x)^{2}+t^{2}}}
$$

Thus, for $x=0$, get $f=0+\frac{h}{2 \sqrt{h^{2}+h^{2}}}=\frac{0.5}{\sqrt{1+(6 / h)^{2}}}$
suppose $b=\frac{h}{4}$, then get $\frac{0.5}{\sqrt{1.0625}}=0.485$
While, for $x=h / 2$, get $f=\frac{h / 2}{\sqrt{(\sqrt{2} /)^{2}+b^{2}}}=\frac{1}{\sqrt{1+(26+h)^{2}}}$
suppose $b=\frac{h}{4}$, theniget $\frac{1}{\sqrt{1.25}}=0.894$
Now, to average, we write $\overline{f_{x_{1}, x_{2}}}=\int_{x_{1}}^{x_{2}} f d x /\left(x_{2}-x_{1}\right)$

$$
\begin{aligned}
& x=b_{2} \text { with } \leqslant h=4 \\
&=\frac{\sqrt{(8-1)^{2}+2^{2}}-\sqrt{1+2^{2}}}{8-2} \\
&=\frac{\sqrt{49+4}-\sqrt{5}}{6} \\
&=\frac{7.280-2.236}{6} \quad \frac{7.286}{5.044} \\
&=0.846=\frac{1}{1.182}
\end{aligned}
$$

If Soma is known to be uncut, then $x=b-c$

$$
\begin{aligned}
& \text { if } x=b \text {, get } \frac{\left.\sqrt{(h-b)^{2}+b^{2}}-\sqrt{b^{2}+k^{2}}\right)}{h-2 b} \\
& \begin{array}{l}
\text { for } b=\frac{h}{4}, \text { get } \frac{\sqrt{9+1}-\sqrt{2}}{4-2}=\frac{\sqrt{10}-\sqrt{2}}{2}=0.87 \\
\\
=\frac{1}{1.144}
\end{array}
\end{aligned}
$$

Hewrong if $x=\frac{h}{6}$ collie $b=\frac{h}{4} \quad$ we $h=12, b=3, x=2$

$$
\begin{aligned}
\frac{\sqrt{(12-2)^{2}+3^{2}}-\sqrt{2^{2}+3^{2}}}{12-4} & =\frac{\sqrt{109}-\sqrt{13}}{8}=\frac{10.44-3.61}{8} \\
& =\frac{6.83}{8}=0.854=\frac{1}{1.17}
\end{aligned}
$$

$$
\begin{aligned}
f_{x, h / 2} & =\frac{1}{2\left(\frac{h}{2}-x\right)} \int_{x_{1}}^{h / 2}\left(\frac{x d z}{\sqrt{z^{2}+b^{2}}}+\frac{(h-x) d z}{\left.\sqrt{(h-z)^{2}+b^{2}}\right)}\right. \\
& =\frac{1}{2(h-2 x)} \int_{x^{\prime}}^{h-x_{1}}\left(\frac{z}{\sqrt{z^{2}+b^{2}}}+\frac{(h-z)}{\sqrt{(h-z)^{2}+b^{2}}}\right) d z \\
& =\frac{1}{2(h-2 x)}\left[\left|\sqrt{z^{2}+b^{2}}\right|^{h-x}+\int_{h-y}^{y} \frac{y(-d y)}{\sqrt{y 2+b^{2}}}\right] \\
& =\frac{x}{2 h(h-2 x)}\left(\sqrt{(h-x)^{2}+b^{2}}-\sqrt{x^{2}+b^{2}}\right)
\end{aligned}
$$

Duppraticular, for $x=0$, get

$$
\begin{aligned}
\bar{f}=\bar{f}_{g, h / 2} & =\frac{\sqrt{h^{2}+b^{2}}-\sqrt{b^{2}}}{h} \\
& =\sqrt{1+(b / h)^{2}}-b-h
\end{aligned}
$$

Thus, for $b=\frac{h}{4}$, get $\sqrt{1.0625}-0.25 \approx 0.78 \approx \frac{1}{1.28}$

* But, ingenesal, for $0 \leqq x \leqslant \ln / 2$, get

$$
\bar{f}_{x, h / 2}=\frac{\sqrt{(h-x)^{2}+b^{2}}-\sqrt{x^{2}+b^{2}}}{h-2 x}
$$

Now, however, extend to neg. values of X.

$$
\text { Sempoction }=\frac{h}{2 R} \text { wher } R=\sqrt{(h+|x|)^{2}+b^{2}}
$$

+ strity allowida supller * ocerndur cyflater get $R=\sqrt{h^{2}+2|x| h+b^{2}}$

$$
f=\frac{h}{2 \sqrt{h^{2}+2 \times 1 h+b^{2}}} \quad(\sec \text { naxtor } 8 b)
$$

for $x=0$, get $f i=\frac{h}{2 \sqrt{h^{2}+t^{2}}}$ in agseemen withp. 83

$$
\begin{aligned}
& \text { for } x=b, \text { get } f=\frac{h}{2 \sqrt{h^{2}+2 b h+b^{2}}}=\frac{h}{2(h+b)} \\
& \text { for } h=4 b \text {, get } \frac{4}{2,5)}=0.4 \\
& \begin{aligned}
& \text { for }|x|=b / 2 \text {, get } f=\frac{h}{2 \sqrt{h^{2}+h+t^{2}}} \\
& \text { her } h=4 b \text { goves } \frac{4}{2 \sqrt{16+4+1}}=\frac{4}{2(4.583)}=\frac{1}{2.29} \\
&=0.437
\end{aligned}
\end{aligned}
$$

Consider - x preserve b - as uncut value

$$
\text { Ton seen fraction }=\frac{b-|x|}{2 b}
$$

$$
\operatorname{less} \frac{R-h}{2 R}
$$

$$
=\frac{b+x}{2 b}
$$

But soma profile rodiess is reduce l from b to $\sqrt{b^{2}-x^{2}}$ And proportion reduction of soma surface area estivate is lyfoctor $\frac{b^{2}-x^{2}}{b^{2}}$.

$$
\begin{array}{r}
\therefore \frac{\text { friction }}{\text { poctionosiss senses supeceasa }}=\left(\frac{b+x}{2 b}\right)\left(\frac{b^{2}}{b^{2}-x^{2}}\right)=\frac{b}{2(b-x)} \\
=\frac{b}{2(b+(x))}
\end{array}
$$

Thus, for $|x|=0$, get $\frac{1}{2}$ in disagremenwith p. 83
for $|x|=b$, get $\frac{1}{4}$ which is not correct

$$
\begin{aligned}
& \text { Lritegatug from }|x|=0 t_{0}\left(x \mid=b \text { gree } \frac{b}{2 b} \int_{0}^{b} \frac{1}{b+y} d y\right. \\
&=\frac{1}{2}[\ln (b+y)]_{0}^{b} \\
&=\frac{1}{2} \ln 2=\frac{0.693}{2}=0.346
\end{aligned}
$$

intagsatng pom 0 to $|x|$ gives $\frac{b}{2|x|} \ln \left(\frac{f+|x|}{t}\right)=\frac{\ln \left(1+\frac{|x|}{b}\right)}{2 \frac{\mid x}{b}}$

Thigeneral, for $0 \leq|x| \leq b$.
hove $\frac{\sqrt{h^{2}+2 h|x|+b^{2}}-\sqrt{h^{2}+b^{2}}}{2|x|}$

$$
\begin{aligned}
f o r & =4 b, \text { get } \sqrt{1+4+16}-\sqrt{1+16} \\
& =\sqrt{21}-\sqrt{17} \\
& =4.583-4.123 \\
& =0.460
\end{aligned}
$$

per $|x|=0$ tot., set $\frac{1}{2}(55-4.123)=\frac{0.877}{2}=0.4385$
$3 / 3 / 64$
fromproviens page in ed we get p.86

$$
\frac{\text { fraction thumbs seen }}{\text { fraction of soma suppessen }}=\left(\frac{h}{\left.2 \sqrt{h^{2}+2|x| h+b^{2}}\right)}\left(\frac{b^{2}}{b^{2}-x^{2}}\right)\right.
$$

Then for $x=0$, as before, get $f=\frac{h}{2 \sqrt{h^{2}+b^{2}}}$
and for $x=b$, get ∞. п?

$$
=\left(\frac{2}{3}\right) \frac{h}{\sqrt{h^{2}+b h+b^{2}}}
$$

Bu don t really wont this
Bettor integrate $f=\frac{h}{2 \sqrt{h^{2}+2 / x / h+t^{2}}}$

$$
\text { for } 0 \leq|x| \leq b / 2
$$

ie. this mean is $\frac{1}{2\left(\frac{b}{2}\right)} \int_{0}^{b / 2} \frac{2}{2 \sqrt{h^{2}+2 h y+b^{2}}} d y$

$$
=\frac{1}{t}\left[\sqrt{h^{2}+2 h y+b^{2}}\right]_{0}^{b / 2}
$$

$$
=\frac{1}{f}\left(\sqrt{h^{2}+h b+b^{2}}-\sqrt{h^{2}+l^{2}}\right)
$$

$$
=\sqrt{1+\ln \left(t+(\ln / t)^{2}\right.}-\sqrt{1+(\ln t t)^{2}}
$$

Simnang for $h=4 b$

$$
\begin{array}{rll}
\ln x=\ln / 2 & f=0.894 & 1.12 \\
x=b & \bar{f}=0.874 & 1.144 \\
x=\ln / 6 & \bar{f} & =0.854 \\
x=1.2 & \bar{f} & =0.846 \\
x=0 & \bar{f}=0.78 & 1.182 \\
x=-b / 2 & \bar{f} & =0.7166 \\
x=-b & \bar{f} & =0.667 \\
x=b & f & 1.28 \\
x=0.828 & 1.4 \\
x=l / 6 & f=0.756 & 1.323 \\
x=b / 2 & f=0.704 & 1.42 \\
x=h / 12 & f=0.642 & 1.56 \\
x=0 & f=0.485 & 2.06 \\
x=-b / 2 & f=0.437 & 2.29 \\
x=-b & f=0.40 & 2.5
\end{array}
$$

$3 / 3164$
This for overall average from - X to $h+x$, need to combine $\frac{\sqrt{h^{2}+b^{2}}-\sqrt{t^{2}}}{h}$ with weight h poop. 84 with $\frac{\sqrt{h^{2}+2 h|x|+b^{2}}-\sqrt{h^{2}+b^{2}}}{2|x|}$ with weight $2|x|$

$$
\begin{array}{r}
\therefore \text { gt } \bar{f}_{-x+h+x}=\frac{\sqrt{h^{2}+b^{2}-\mid b^{2}}+\sqrt{h^{2}+2 h|x|+b^{2}}-\sqrt{h^{2}+b^{2}}}{h+2|x|} \\
\quad=\frac{\sqrt{h^{2}+2 h|x|+b^{2}}}{h+2|x|}-b
\end{array}
$$

$$
\begin{aligned}
& f\left(x \mid=b \text {, get } \frac{h+b-l}{h+2 t}=\frac{h}{h+2 b} ; \text { for } h=46 \text {, gt } \frac{4}{6}=0.666\right. \\
& \begin{aligned}
& f\left(x \left\lvert\,=\frac{h}{2}\right. \text {, get } \frac{\sqrt{h^{2}+h t+t^{2}}-b}{h+t} ; \text { fr } l=4 t, \text { get } \frac{\sqrt{21}-1}{5}\right. \\
&=\frac{3.583}{5}=0.7166=\frac{1}{1.336} \\
& \approx \frac{1}{1.4}
\end{aligned}
\end{aligned}
$$

\qquad
\qquad
\square

$$
(-1-3 \pi+5 \cdot x+1204+1
$$

Not anit rugle tecoure

$$
\begin{aligned}
& \frac{3}{4} \bar{t}_{1 / 2,1 / 2}+\frac{1}{4} \bar{f} \bar{f}_{0,4 / 2} f_{0, h / 2}^{1} \\
& \frac{3}{4}(.8446)+\frac{1}{4}(.637)>0.78
\end{aligned}
$$

$3 / 3 / 64$
Cre nuore cosp
Af we know it is cut, how about
latking xprom - $b / 2$ to $+b / 2$
-b/2 tozero we already have
oto $+b / 2$ eup. 84 use these limits

$$
\begin{aligned}
& \bar{f}_{0, t / 2}=\frac{1}{2(t / 2)} \int_{0}^{b / 2}\left(\frac{z d z}{\sqrt{z^{2}+l^{2}}}+\frac{(h-z) d z}{\sqrt{(h-z)^{2}+l^{2}}}\right) \\
& =\frac{1}{b}\left\{\left[\sqrt{z^{2}+c^{2}}\right]_{0}^{\frac{t}{2}}-\left[\sqrt{y^{2}-b^{2}}\right]_{h}^{h-b / 2}\right. \\
& =\frac{1}{f}\left\{\sqrt{1.25 t^{2}}-t+\sqrt{h^{2}-b^{2}}-\sqrt{(h-b / 2)^{2}-b^{2}}\right\} \\
& =\sqrt{125}-1+\sqrt{(4 / 6)^{2}-1}-\sqrt{(4-1 / 2)^{2}-1} \\
& =1.118-1+\sqrt{15}-\sqrt{49 / 4}-1 \\
& =0.118+3.825 \\
& =0.637
\end{aligned}
$$

88
Clso people to see or write. Kathunn Thomas Minnerota)
Tom Smith
7itatugh
aithen
Braitenterg
Duritutang
$3 / 4 / 64$
Stochitating op lopers to be Coupleted in Comnns Ypare
forider Conmenative Volume - -6 pages
Deneritic Synapptic Patterno: Experiment with Mathemstial Model
Paper on Branchno Setrapotation for Dendritce Podial Synmetry "1" "PDenlitic Surfor Gea Eshruatu pom dithenis DAta " "Denbriti uput Coudretancel
Theortical rists of Ver V_{i} for spherical soma
Thoort. Dist of Ve for asypunctic dendutic eraxtoma traysients
Theoret traysisients of for radially symmetur cose (ssochach. Theory for V e woth synderenoms acturly in contial loges. Comparison o/ Theory \& Exp. for Ve m Olfactory Bull. Math. Model for Compitation of acton Potental Pospagation into Doasions of Cheryis goonchy y Sofoty tictor.
Colulation of minioture efsp's genented at chifferent distances, for comparison with Kalt.
Also I location dogenereviea of effect of pivolue.
 anl to Symupter Mechonisen.
Diegramnatic comprison of single cell, popsofolls, leyess.

Effot probobly connot he attributef to a net nicreare an ionic conc., lens rother, to an isotropir offect. This may require careful analyois.
$3 / 10 / 64$
Tellot toton - at Mones'nuitobuction, with Stan Appel He hos workat meder Goddon Tomphinis on bactorial genaties dew is very unch concernatuith newrology, basming of its nolecular viological subestrale.

He sarpthot grey watter has great excelld / RNA of wos concesmed with linke from sywptic regrou to hilloctiozger vegoon. fcommented that micreasel core conductonce wor impoitand \& while t hod oragivally thought of nicreasel eron section, mirread vonie core coubritance could also do it.

He thought of nomifitrits q t ponated on il CNA collicts ùdentritie cose, ats fixedebarge would hold cloned of ious which could condrat. He soy fixed charze is ng. 4 वi. cloud ith cotions. If ANA is michain arrovzernec (nenvotituts) this could conduct ions olvor as a copper ivire contucts electoons.
Buestion, how to selectively faror ove dendicitis
thee of draw RNA nito dendrite \& Ausues, if the Qante conditcoing procens also has a lorges lostring Cour level depol.- in denbitic periphery assoc. with it, the coreccorsen, from persplory to soma, will set up a pot-grodion that will attract the charge RNA up into the core of eventlend somernat to draw or of neizhbowar dendrites, Net remelt is to nicrease veog livy to thal dustriter tree. Towo offed (1) aiturily of all produces RNA a sona (2) depol of particulb tree favars diffusion of PNA mito that tree (3) Result is lo vicreose vergkt of that bsee in milegrative activity.

Renember that Edoesnot cornerp spatty to Na g
beconge b_{r} continis a little also, bís notnuch.

$$
\tau \dot{v}=-\frac{(1+\varepsilon+g)}{z} v+\left(2 \psi_{0}(v+t--2 v)+\varepsilon-\beta \gamma+\psi\right.
$$

forvoltrge derpring, cale $-\Psi$ for $\dot{V}=0, V=$ conts

Dork suyp thir hes sme Topologiral properties an (A) IHI autiapite two questrois (1) How wole in reppont to voltage clayy? (2) How- does inpedance change.

3/10/64
Talhed this oftermoonto Dick JitgAngh
presented the equations of
Then added the ayoural equations (non-hinsaisty in this fory

$$
\begin{aligned}
& \dot{\varepsilon} \propto k_{1}(v)^{3}-\left(k_{2}+k_{3} g\right) \varepsilon \\
& \dot{g} \propto\left(k_{2}+k_{3} g\right) \varepsilon-k_{4} g
\end{aligned}
$$

His reaction wos to exapurfue

as If begins to niorease $\dot{V}=0$ compp $t_{0} V=\frac{\varepsilon-0.1 g}{1+\varepsilon+y}$ Cusbe moves up

$$
\dot{\varepsilon}=0 \text { cosverp to } \varepsilon=\frac{k_{1} v^{3}}{\frac{k_{2}+k_{3} g}{q}}
$$

Cure whoos down Soldte poits shete to the
ogets lost.

sata ine

$3 / 11 / 64$
Talnod to Van Busen a couple o/weoha ago. He was secondring gromp artitrour respouses in vential hom with steel needle for stim of uns de nerve (gaitioe) at wos plottring amplitudes of (1) \& (E) position in V.Ra got rather sharp, spatiol decrervenst. Considerable sesernblance to secords + did with Eucles in 1949. Var Buren woticed that rigaturity and to fractionate. in to 4 or 5 steps, with groded stwin streng th. I commented that thir fits idea of hinited closed field for the negativity. Ny thouglet wes tha the positibity would be the sum of many wore units, beconse of oper fietd (forimpuilse on afon). wheres ng. would be sum of fewer becarese Lewer closed fietds oneslop. He didrit quite sean to get the point. If A am sight, this gromp f / © satio should he larger thon for a snigle cell. This, A belive to be the case. Also, the Ψ should tirn over deefp, the θ less so if at all Yesterdoy, 1 sow Van Buren à fose's betire of asked him hons his talk in Moutreal went. So-So.

Hevas askod two questions tha he thentionat to vue (i) explonithe heg. - hetried to explain by neovs of ning superposition argunend shere nog. Swanps poa. I apparoutly this is hand to get across. (2) They wouted to know colly the pos. was so frief - snice vignulse opprovehes over loug destorice. He could not ansumes. Whanswer is a)core resistance, b) voles hove suivell area. sie. ouly at weor opprooch woued there he oppricioble source current flowmy roma soma of derdrites. Moybe thir shoued lie writer up sometime.

For hot kinctio of 64791.0666

$$
k_{1}=R A C T+R I N B=600 * 50=3 \times 10^{4}
$$

$$
k_{2}=\text { ROUTB }=20
$$

$$
\begin{aligned}
& \varepsilon=600 * B \\
& g=20 * C
\end{aligned}
$$

$$
K_{3}=\text { QENCHB/QENCHA }=60 / 20=3
$$

$$
k_{4}=\text { ROUTC }=3
$$

in 64791.0647 sot sametico olso $\frac{\text { QENCHA }}{\text { RACT }}=\frac{20}{600}=1 / 30=.0333$
pedk $B \simeq .76-\varepsilon \simeq 450$ wothc $\approx .49 \rightarrow g \approx 10$
later peak $C \simeq 2.6 \quad g \simeq 50$. wth $B \approx .026 \rightarrow 2 \approx 12$
Seep. 26 , for V^{2}, RACT $=600, \operatorname{RINB}=2$.

For cool binetics of 64791.0669

$$
k_{1}=500 * 30=1.5 \times 10^{4}
$$

$$
\begin{aligned}
& \varepsilon=500 * B \\
& y=15 * C
\end{aligned}
$$

$$
k_{2}=20
$$

$$
k_{3}=40 / 15=2.667
$$

in 64791.0646 cool banctico

$$
k_{4}=3
$$

$$
\text { peak } B * .58 \rightarrow 8 \approx 300 \text { also } \frac{Q E N C H A}{\text { RACT }}=\frac{15}{500}=.03
$$

later peak $C \approx 2.2 \rightarrow g \approx 33$

Thesetwo set of binctic corsts hove much in coumon $k_{3} \simeq k_{4} \simeq \frac{3}{20} k_{2}$ and Qenatit/Rnet $\simeq 1 / 30$
Also prak of is oppoy 0.11 of peak \mathcal{E}
Most impor bon doperence isfoitor of 2 in k_{1} which yied factor of 1.5 pedk ε.
$3 / 1164 \quad \tau \dot{v}=-(1+\varepsilon+g) r+\varepsilon+\beta g+\psi+\varepsilon u_{j}\left(y_{j}-v_{i}\right)$
Shooed convider nivestigating mipedance क clamp sespouse of ny mimpulae model. Angor to consider how much proppaning might be needed. Can do this for a single path, or a few patches. But veed to convider relation. letween equations in E of g as grien fitghigh and equestoins in RACT ete.

$$
\begin{aligned}
& \text { Ecoresp to B*RACT } \\
& g \text { cossesp to } C * Q E N C H A
\end{aligned}
$$

p. 50

$$
\begin{aligned}
& \therefore \tau \dot{C}=\operatorname{RINB*V} V^{3}-B *(C * Q E N C+B+R \text { OvTB }) \quad \text { for } V \geq 0 \\
& \text { meas } \tau \dot{\varepsilon}=\text { AncT } * \dot{B} \\
& =(\text { RACT } * R I B B) * V^{3}-\varepsilon *\left(g * \frac{\text { QENCHB }}{\text { QENCAA }}+\text { ROUTB }\right) \\
& \therefore \text { fir } \dot{\varepsilon} \dot{\varepsilon}=k_{1} v^{3}-\left(k_{2}+k_{3} g\right) \varepsilon \\
& k_{1}=\text { RACT *RINB } \\
& k_{2}=\text { ROUTB } \\
& \tau \dot{C}=\text { BTOC - ROUTC } * C \\
& k_{3}=\text { QENCHB/QENCHA } \\
& \tau \dot{f}=\text { QENCHA } * \dot{C}
\end{aligned}
$$

$$
\begin{aligned}
& \left.=\frac{(q=1 / R+R O T B+Q E N C H B * g)}{R_{A A T}}\right) \varepsilon-R O V T C * g
\end{aligned}
$$

$$
\begin{aligned}
& k_{4}=\operatorname{Routc} \\
& k_{2}+k_{3} \text { areblene }
\end{aligned}
$$

factor quecha/ ranct
 intarm, presents neg C. With V^{2}, misit nut neel this.

- (Mns Kamedy 64648)

Tine charged to 40029 in 1963-4 fircal yoor
Guly Poyspaming
Aug
Sent 0.8 hour
Nov.
Dec.
San.
3.6

$\$ 143.50$	
623.	
119.	
638.75	
829.50	
346.50	365
337.75	230
743.75	325
607.25	485

$$
5166
$$

Keypunch Mro. Richetts, Mrs. Nier
Bleg 2 -Dr. Coulter Ext. 64295 has beypunch
Messenger service - phove Mrs. Costello 63058
or Mr. Quave 64648

Debuggng

$$
G-1-3 B
$$

(1) Noonan Thompson
(3) Vemon jauder 66037
(4) Bof Brunille 65181

Prideany 66021 4thfor Bum, 8 If 31

Computation Poople
Bobfillard?
$\left.\begin{array}{l}\text { Mrs. Culpepper } \\ \text { Dolores torcior }\end{array}\right\} 66184$
ferrg7arlow 66037) pp $65-66$
Setty garber

Poperol Spherical Verdokiltembror

Although Fochese are nemons with almos spherical somas, twish to enphasize that this poper is.
orP

$$
\begin{array}{r}
J=\frac{1}{c} \frac{d u}{d t}-w-\left(u-\frac{u^{3}}{3}\right) \\
c \frac{d w}{d t}+b w=a-u
\end{array}
$$

variobles $\mu, w \neq J$ of $B V P$ conespand to $(V, m)(h, n)$ I

Tuslow
94-66037

note re Vanburen

Botanical Histochemistry

JULY 10-28, 1967

Letters and Science Extension in cooperation with

 The Electron Microscope Laboratory / University of California, Berkeley
BIOLOGICAL ELECTRON MICROSCOPY X 403.

JUNE 19-30, 1967

Rapid advances in electron microscopic applications to biological materials and the development of new electron microscopic techniques make electron microscopy an increasingly important field of modern science. This course, conducted on the postgraduate level, is intended as a systematic introduction to the theory and application of electron microscopy of biological materials. It will utilize a broad spectrum of speakers and new laboratory equipment to provide a basic understanding of modern techniques for electron microscopy and to review recent advances which electron microscopy has produced in the biological sciences.

Objectives

To provide instruction and experience in basic techniques in electron microscopy of biological materials; to develop the participants' ability to evaluate the suitability of problems for electron microscopic investigation; to provide a basic knowledge of the application of electron microscopic methods to specific research areas in biology and medicine; to demonstrate advanced techniques of specimen preparation and electron microscopy; and to advise on the planning, establishment, and organization of electron microscope laboratories.

Content

The course will include a comprehensive series of lectures and demonstrations surveying electron optics and electron microscopy theory. The demonstrations will cover techniques and applications of biological electron microscopy, with the aim of helping participants learn about the types of laboratory equipment, preparation of specimens, operation of the electron microscope, and specific modern electron microscopy techniques. Approximately half of the lectures will feature application to specific biological or medical areas.

Each participant will be individually scheduled for lectures and the several concurrent laboratory and demonstration sections; in this way it is possible to accommodate different levels of experience and individual interests while keeping group sizes small, assuring participants ample opportunity for guidance and discussion. Research material appropriate to each participant's field of interest will be provided. Participants may elect to bring suitable specimens to the course and to prepare and examine them as part of the laboratory exercises. Those who do so must submit a research plan with their application.
An exclusive course manual will be provided, and a library and reading room will be available for study. The laboratory will also be open in the evenings and on the weekend. A social program is included to provide informal opportunities to exchange views and extend academic associations.

For Whom Intended

The course is intended for scientists in colleges, universities, and industry who need to be familiar with electron microscopy, and for electron microscopists seeking a refresher course that includes the latest techniques. The course should be of interest to senior investigators, postdoctoral fellows, advanced graduate students, and professional technicians.

Daily Schedule

Morning and Afternoon	Concurrent Lectures and Labora- tories (two laboratories each morn- ing and afternoon)
Evening	Demonstrations and Laboratories
Weekend (June 24-25)	Laboratory open during the day

Lecture Schedule		June 29	
		Morning	Protozoa and Spermiogenesis
June 19		Afternoon	Chromosomes
Morning	Registration and Orientation	Evening	Special Demonstration
Afternoon	Specimen Preparation. Discussion		
Evening	T.V. Tapes: Specimen Preparation	June 30	
		Morning	Biochemical Cytology
June 20		Afternoon	To be announced
Morning	Electron Optics	Evening	Banquet
Afternoon	Electron Optics		
Evening	Reception	Demonstra	tions
		Operation of E	Electron Microscopes
June 21		Sectioning	
Morning	Ultracytochemistry		
Afternoon	Ultracytochemistry	Knife Breaking	g and Film Making
Evening	T.V. Tapes: Microtomy	Photography	
		Fixing and Emb	bedding
June 22		Freeze Etching	
Afternoon	Film Making and Knife Breaking	DNA Spreading	
	Light and Electron Microscopy Methods	Magnification	Calibration
Evening	T.V. Tapes: Shadowing and Negative Staining	Resolution Determination	
		Microscope Al	ignment
June 23		Microscope Maintenance	
Morning	Scanning Microscope	Autoradiography	
	Autoradiography	Light Microsco	pic Techniques
Afternoon	Excursion	Stereo Electron Microscopy	
		Scanning Microanalysis	
June 26		Negative Staining	
Morning	Molecular Biology and Virology		
Afternoon	Molecular Biology	Heavy Metal	hadowing Technique
Evening	Autoradiography	Equipment Evaluation and Analysis	
		Labeled Antibo	dies
June 27			
Morning	Freeze Etching / Membranes	Special Dis	cussions
Afternoon	Botanical Applications		and Planning of Laboratories
Evening	Freeze Etching	Financing and Administration of Laboratories	
June 28			
Morning	Zoological Applications		
Afternoon	Filamentous Organelles		
Evening	Light and Electron Microscope Applications		

DR. WILFRED RALL
OFF. MATH. RES., NIAMD
BLDG. 31, ROOMM 9-A-17
NATIONAL INSTITUTE BETHESDA. MARYLAND 20014

Cover Photograph

Freeze fracture replica of the surface of a pig kidney tissue culture cell showing inner and outer membrane aspects and micro-villi. $100,000 \mathrm{X}$. By Melvin Weinstock, Department of Zoology, University of California, Berkeley.

Inside Photograph

Root cap of onion root tip (Allium cepa var. white globe). Periodic acid-Shiff reagent (PAS) used to localize insoluble carbohydrates. By William A. Jensen, Department of Botany, University of California, Berkeley.

C
C
2.4.64 ADDED TEST AT 460.
1.21 .64 MOD OF WXR786C.
1.10 .64 TO GO WITH WXR82C
1.8 .64 QENCHA IN CALL ARGUMENT
12.31 .63 ADD AFPOS, $\operatorname{VMIN}=-.1$
12.27 .63 MOD OF WXR786C TO USE WXR80C FOR PLOT INSTEAD OF WXR8IC.
12.26 .63 MOD OF WXR785C. ADDED CLOCK.
12.18 .63 MOD OF WXR783C. THIS IS CUBED VERSION 12.14 .63 MOD OF WXR781C 12.17.63
12.9.63 MOD WITH CHANGED DIMENSIONS. NC. AX-S-D ORDER.
12.5.63 MOD OF 707 AND 709C.
902 FORMAT (18HOUTPUT OF WXR791C.
X 24HDR. W. RALL, EXT. 64325. / 15HBLDG. 31, 9A23. //)
c
DIMENSION VAZ (14), VBZ (14), AB(14), AC(14), BB(14), BC(14),
$1 \operatorname{VAP}(251), \operatorname{VBP}(251), \operatorname{TK}(251), Z J(251), \operatorname{VATZ}(251,14), \operatorname{VBTZ}(251,14)$,
$2 \operatorname{KTA}(10), \operatorname{KTB}(10), \operatorname{BEB}(10,10), \operatorname{BJC}(10,10), \operatorname{KTSP}(10), \operatorname{VSP}(10)$
900 FORMAT (1HO)
WXR701C
WXR701C
WXR701C
903 FORMAT (22HEND OF WXR791C OUTPUT.)
904 FORMAT (////)
120 WRITE OUTPUT TAPE 15, 902 WXR701C
140 READ INPUT TAPE 1, 951, NC,
X PROBNO,NT,NSTEP,DT,DZ,NEJ,NSP, IFTEST
951 FORMAT (I1,9X,F10.4,2(5X,I5),2F10.4,2(3X,I2),I10)
921 FORMAT $2 H N C, 12 X, 6 H P R O B N O, 8 X, 2 H N T, 5 X, 5 H N S T E P, 8 X, 2 H D T, 8 X, 2 H D Z, 2 X$,
X 3HNEJ,2X,3HNSP,4X,6HIFTEST /1
141 IF END OF FILE 142.150
WXR701C
142 WRITE OUTPUT TAPE 15, 903
144 STOP
WXR701C
150 WRITE OUTPUT TAPE 15, 920
WXR7010
INFORMATION. ////)
OUTPUT TAPE 15, 921
WRITE OUTPUT TAPE 15, 951, NC,
X PROBNO, NT,NSTEP,DT,DZ,NEJ,NSP, IFTEST
161 WRITE OUTPUT TAPE 15, 904
1611 IFSPOT = IFTEST - 100
C1611 SEE 481. E.G. IFTEST $=6112185$ MEANS THAT FROM KT=61 TO KT $=121$ GIVE TEST
C PRINT IN RUNGE KUTTA FOR EVERY FIFTH KT. 6112115 GIVES NABC TEST.
(3) 1612 IF(IFSPOT) $162,162,1613$
1613 KMSPOT $=$ IFTEST/100
1614 KSPOT = KMSPOT/1000
$K K=1000 * K S P O T$
1615 MSPOT $=$ KMSPOT $-K K$
KMCENT $=100 * K M S P O T$
1616 IFTEST = IFTEST - KMCENT
1617 KNRK $=$ KSPOT
1618 KRTEST $=0$
1619 NRKABC $=$ IFTEST -80
1620 IF (NRKABC) 1621,1621,173

```
1621 NABC = IFTEST - 10
    1622 KNABC = KSPOT
    1623 GO TO 180
    162 NRKABC = IFTEST - 80
    163 IF(NRKABC) 168,168,164
    164 KRTEST = 0
    165 KNRK = 1
    166 GO TO 173
    C 166 KRTEST=1 CAUSES TEST PRINT WITHIN KUTTA-RUNGE SUBROUTINES. SEE 482-3
    168 KRTEST = 0
    169 IF(IFTEST-10) 173,173,170
    170 NABC = IFTEST - 10
    C 170 THIS IS USED AT 410 FOR SELECTED PRINT.
    171 KNABC = 1
    172 GO TO 180
    173 NABC = 0
    180 READ INPUT TAPE 1, 952, NC,
        X NPLT,LJZPLT,NSPPLT,NSKIPT,IFHL,NPLZ,LKTPLZ,NSPPLZ,NSKIPZ
    922 FORMAT ( }6X,4HNPLT, 4X, 6HLJZPLT, 4X, 6HNSPPLT, 4X, 6HNSKIPT,
        X1OH IFHL NPLZ,4X,6HLKTPLZ, 4X, 6HNSPPLZ, 4X, 6HNSKIPZ /)
    922 FORMAT (II, I9, 3I10, 2I5, 3I10)
    190 WRITE OUTPUT TAPE 15, }92
WXR701C
2 0 0 ~ W R I T E ~ O U T P U T ~ T A P E ~ 1 5 , ~ 9 5 2 , ~ N C , ~ W X R 7 0 1 C ~
        X NPLT,LJZPLT,NSPPLT,NSKIPT,IFHL,NPLZ,LKTPLZ,NSPPLZ,NSKIPZ
    210 WRITE OUTPUT TAPE 15, }90
WXR701C
210 WRITE OUTPUT TAPE 15, 904 
```



```
        X 953, NC,UA,UD,USA,USD,CORE,NJA,NJD,IFVE,IFAB
    9 5 3 ~ F O R M A T ( I I , ~ 4 X , ~ 5 F 1 0 . 5 , ~ 3 I 5 , ~ I 1 0 ) ~
    923 FORMAT ( 8X, 2HUA,8X,2HUD,8X,3HUSA,7X,3HUSD,9X,4HCORE,3X,3HNJA,2X,
        X 3HNJD, 5H IFVE, 6X, 4HIFAB //
    221 WRITE OUTPUT TAPE 15,923
    222 WRITE OUTPUT TAPE 15,
        X 953, NC,UA,UD,USA,USD,CORE,NJA,NJD,IFVE,IFAB
    23 WRITE OUTPUT TAPE 15, 904
    C JH=INDEX OF HILLOC. JS=INDEX OF SOMA. JT=INDEX OF TRUNKS.
    250 JH = NJA
    251 JS = JH +
    252 JT = JS + 
    253 NZ = JS + NJD
    254 NLZ = NZ - 1
    230 READ INPUT TAPE 1,
        X 954, NC, (VAZ (JZ), JZ=1, 14)
    954 FORMAT(I1, 6X, 14F5.2)
    924 FORMAT (35HSPECIFICATION OF INITIAL VAZ=VBZ. /)
    231 WRITE OUTPUT TAPE 15, }92
    232 WRITE OUTPUT TAPE 15,
        X 954, NC, (VAZ(JZ), JZ=1, 14)
    233 WRITE OUTPUT TAPE 15,904
    240 READ INPUT TAPE 1,
        X 955, NC, RACT,RINB,RINC,QENCHA,ROUTB,ROUTC,QENCHB,AFPOS
    955 FORMAT (II, 4X, 7F10.5, F5.2 )
    925 FORMAT (9X, 4HRACT, 6X, 4HRINB, 6X, 4HRINC, 4X, 6HQENCHA, 5X,
```

 \(X\) 5HROUTB, \(5 x, 5\) HROUTC, \(4 X, 6\) HQENCHB \(2 X, 5\) HAFPOS \(/ 1\)
 243 WRITE OUTPUT TAPE 15, 925
 243 WRITE OUTPUT TAPE 15,
 X 955, NC, RACT,RINB,RINC,QENCHA,ROUTB,ROUTC,QENCHB, AFPOS
 245 WRITE OUTPUT TAPE 15, 904
 2451 IF(NEJ)2461,2461,2452
 2452 WRITE OUTPUT TAPE 15, 936
 2452 WRITE OUTPUT TAPE,
$X 966, N C, K E J, K T A(K E J), K T B(K E J),(B E B(J Z, K E J), J Z=J T, N Z)$,
$\times(B J C(J Z, K E J), J Z=J T, N Z)$
966 FOMAT
966 FORMAT(I2,I3,2I5,2X,20F5,2)
936 FORMAT(15 H KEJ KTA KTB, $4 \mathrm{X}, 12 \mathrm{HBEB}(J Z, K E J)$. $38 \mathrm{X}, 12 \mathrm{HBJC}(J Z, K E J), /)$
936 FORMATI15H KEJ KTA
2454 WRITE OUTPUT TAPE 15,
$\times 966, N C, K E J, K T A(K E J), K T B(K E J),(B E B(J Z, K E J), J Z=J T, N Z)$,
$\mathrm{X}(B J C(J Z, K E J), J Z=J T, N Z)$
2455 IF (KEJ-NEJ) $2456,2460,2460$
2456 WRITE OUTPUT TAPE 15,900
2456 WRITE OUTPU
2457 GO TO 2453
2460 WRITE OUTPUT TAPE 15
2461 IF (NSP) $248,248,2462$. 2462 WRITE OUTPUT TAPE 15, 937
2462 WRITE OUTPUT TAPE
2463 READ INPUT TAPE 1 ,
463 READ INPUT TAPE 1 ,
$\times 967$, NC,KSP, KTSP $(K S P), V S P(K S P)$
967 FORMAT (12,I9,I10,5X,F10.5)
937 FORMAT ($7 \mathrm{X}, 3 \mathrm{HKSP}, 6 \mathrm{X}, 4 \mathrm{HKTSP}, 9 \mathrm{X}, 3 \mathrm{HVSP} /)$
2464 WRITE OUTPUT TAPE 15 ,
X $967, N C, K S P, K T S P(K S P), V S P(K S P)$
2465 IF (KSP-NSP) $\quad 2466,2470,2470$
2466 WRITE OUTPUT TAPE 15, 900
2467 GO TO 2463
2470 WRITE OUTPUT TAPE 15, 904
248 VMAX $=1$ 。
249 VMIN $=-$.
201 MKTPLZ $=1+$ NPLZ*LKTPLZ
202 IF (MKTPLZ - NT) 205,205,203
203 MKTPLZ $=N T$
205 MJZPLT $=$ NPLT*LJZPLT
206 IF (MJZPLT - NZ) 255,255,207
207 MJZPLT $=N Z$
255 IF $(N Z-14) \quad 260,260,256$
256 WRITE OUTPUT TAPE 15, 257
257 FORMAT(36HSTOP BECAUSE NZ IS GREATER THAN 14. /)
258 GO TO 140
C 260 HERE GENERATE T VALUES, BEGINNING WITH ZERO.
260 TK(1) $=0$.
261 DO 270 KT=2,NT
270 TK $(K T)=T K(K T-1)+D T$
$280 \mathrm{ZJ}(1)=0.5 * D Z$
$280 \mathrm{ZJ}(1)=0.5 * D Z$
$281 \mathrm{DO} 282 \quad J Z=2, N Z$
281 DO $282 J Z=2, N Z$
$282 Z(J Z)=Z J(J Z-1)+D Z$
311 IF (NSTEP) $312.312,320$
312 NSTEP $=1$
320 XND = NSTEP

331 HAFDEL $=.5 *$ DELT
332 DELSIX $=$ DELT/6.
999 FORMAT (/ 15HELAPSED TIME IS I6, $10 H$ SECONDS. /)
366 ICLOCK $=1$
CALL NIH104 (ICLOCK,JCLOCK)
WRITE OUTPUT TAPE 15,999, JCLOCK
346 WRITE OUTPUT TAPE 15, 901
$350 \mathrm{KT}=1$
WXR701C
$351 \mathrm{KEJ}=1$
352 KSP $=1$
C 360 HERE TO 390 TAKE CARE OF ZERO AND NONZERO INITITIAL CONDITIONS.
360 DO $365 \mathrm{JZ}=1$, NZ
$361 A B(J Z)=0$.
$362 A C(J Z)=0$.
$363 \mathrm{BB}(J Z)=0$.
$364 B C(J Z)=0$ 。
$365 \mathrm{VBZ}(\mathrm{JZ})=\operatorname{VAZ}(\mathrm{JZ})$
C 370 THIS PROVIDES FOR SYNAPTIC E AND J。
370 IF (NEJ) $390,390,3701$
3701 IF (KEJ-NEJ) $371,371,390$
371 IF (KT-KTA(KEJ)) $390,380,372$
372 IF(KT-KTB(KEJ) 390,390,373
372 IF(KT-KTB(KEJ)) $390,390,373$
373 DO $375 \mathrm{JZ}=\mathrm{JT}, \mathrm{NZ}$
$374 \mathrm{BB}(J Z)=0$.
$375 \mathrm{BC}(J Z)=0$.
$376 \mathrm{KEJ}=\mathrm{KEJ}+1$
377 GO TO 3701
380 DO $382 \mathrm{JZ}=\mathrm{JT}, \mathrm{NZ}$
$381 \mathrm{BB}(J Z)=\mathrm{BEB}(J Z, K E J)$
$382 \mathrm{BC}(J Z)=\mathrm{BJC}(J Z, K E J)$
390 IF (NSP) 410,410,3901
3901 IF (KSP - NSP) 391,391,410
391 IF (KT-KTSP(KSP)) $410,392,395$
$392 \operatorname{VAZ}(1)=\operatorname{VSP}(K S P)$
393 GO TO 410
395 KSP $=K S P+1$
396 GO TO 3901
C 410 SEE 169-171. PRINT ONLY WHEN KT IS A MULTIPLE OF NABC = IFTEST-10.
410 IF (NABC) $430,430,4101$
4101 IF (IFSPOT) $411,411,4102$
4102 IF (KT-KSPOT) $430,420,4103$
4103 IF (KT-MSPOT) 411,420,430
411 IF $(K T-K N A B C) \quad 430,420,412$
412 KNABC $=K N A B C+N A B C$
413 GO TO 411
420 WRITE OUTPUT TAPE 15,931, KT, TK(KT), IFAB, PROBNO
931 FORMAT $1 / 3 H K T=, 13,3 X, 3 H T K=, F 7 \bullet 3,5 X, 22 H T E S T$ PRINT IN WXR791C.
X 10X, 5HIFAB =, I $3,35 \mathrm{X}$, 8HPROBNO., F10.4 /)
421 IF (IFAB) $422,422,423$
422 WRITE OUTPUT TAPE 15, 942, (VAZ(JZ), JZ=1, NZ)
4221 WRITE OUTPUT TAPE 15, 942, (AB(JZ), JZ=1,NZ)
4221 WRITE OUTPUT TAPE 15, 943, (AC(JZ), JZ=1,NZ)
423 IF (IFAB) $430,424,424$

```
424 WRITE OUTPUT TAPE 15, 942, (VBZ(JZ), JZ=1,NZ)
4241 WRITE OUTPUT TAPE 15,942, (BB(JZ), JZ=1,NZ)
4242 WRITE OUTPUT TAPE 15, 943, (BC(JZ), JZ=1,NZ)
942 FORMAT (2X, 14(IX, F7.4))
9 4 3 ~ F O R M A T ~ ( 2 X , ~ 1 4 ( 1 X , ~ F 7 . 4 ) / ) ~
    4 3 0 ~ D O ~ 4 5 0 ~ J Z = 1 , ~ N Z ~
    4 4 0 \operatorname { V A T Z ( K T , J Z ) = V A Z ( J Z ) }
    450 VBTZ(KT,JZ)=VBZ(JZ)
    460 TESTV = VAZ(JS) - 5*
    4 6 1 ~ I F ( T E S T V ) ~ 4 8 0 , 4 8 0 , 4 6 2 ~
    4 6 2 ~ I F V E = 0
    4 6 3 ~ N P L Z ~ = ~ 0 ~ 0
    4 6 4 ~ N T ~ = ~ K T ~
    465 WRITE OUTPUT TAPE 15, 466, KT
    466 FORMAT I//3OHDISCONTINUE COMPUTATION AT KT= I3,
    X56H, BECAUSE VAZ(JS) EXCEEDS 5. NOW GO TO 520 WITH NT=KT. //
    4 6 7 \text { GO TO 520}
    480 IF(KT-NT) 481,520,520
    481 IF (NRKABC) 491.491,4810
    4810 IF(IFSPOT) 482,482,4811
    4811 IF(KT-KSPOT) 490,483,4812
    4812 IF(KT-MSPOT) 482,483,490
    482 IF(KT-KNRK) 490,483,485
```



```
    4 8 4 ~ G O ~ T O ~ 4 9 1 ~
    4 8 5 ~ K N R K ~ = ~ K N R K ~ + ~ N R K A B C ~
    4 8 6 ~ G O ~ T O ~ 4 8 2 ~
    490 KRTEST = 0
    491 IF(IFAB) 492,492,494
    491-1=ACTIVE ONLY 0=ACTIVE AND PASSIVE. +1=PASSIVE ONLY
    492 THIS SUBROUTINE PERFORMS RUNGE KUTTA FOR ACTIVE DENDRITIC MEMBRANE.
    492 CALL WXR91C IVAZ,AB,AC,
    l KT, DELT,NSTEP,HAFDEL,DELSIX,KRTEST,
        2 ~ N Z , N L Z , J S , J H , J T , U A , U D , U S A , U S D ,
        3 \text { RACT,RINB,RINC,QENCHA,ROUTB,ROUTC,QENCHB,AFPOS)}
        MAINPRO
        494 IF(IFAB) 500,495,495
        C 495 THIS SUBROUTINE PERFORMS RUNGE KUTTA FOR PASSIVE DENDRITIC MEMBRANE.
        495 CALL WXR92C IVBZ,BB,BC,
            1 KT, DELT,NSTEP,HAFDEL,DELSIX,KRTEST,
            2 NZ,NLZ,JS,JH,JT,UA,UD,USA,USD.
            3 RACT,RINB,RINC,QENCHA,ROUTB,ROUTC,QENCHB,AFPOSI MAINPRO
        500 KT = KT + WXR701C
        500 KT = KT + 1
        WXR701C
    510 GO TO 370
        520 KVE = 0
        CALL NIH104 (ICLOCK,JCLOCK)
        WRITE OUTPUT TAPE 15,999, JCLOCK
```



```
        531 IF(IFAB) 532,532,536
        5 3 2 \text { WRITE OUTPUT TAPE 15, 926, PROBNO, (JZ, JZ=1,NZ)}
        926 FORMAT (IIHVATZ(KT,JZ) 90X, 8HPROBNO., F10.4 //
        26 FORMAT (1IHVATZ(KT,JZ) 90X, 8HPROBNO., F10.4 1/ 
        533 DO 534 KT=1, NT
534 WRITE OUTPUT TAPE 15, 956, KT, (VATZ(KT,JZ), JZ=1, NZ)
```

956 FORMAT (I3, $5 \mathrm{X}, 14(1 \mathrm{X}, \mathrm{F} 7.4)$)
535 WRITE OUTPUT TAPE 15,904
536 IF (IFAB) $560,538,538$
538 WRITE OUTPUT TAPE 15, 927, PROBNO, ($\mathrm{JZ}, \mathrm{JZ}=1, \mathrm{NZ}$)
927 FORMAT (11 HVBTZ(KT, JZ) 90X, 8HPROBNO.. F10.4 //
540 XO $550 \mathrm{KT}=1$, NT
$3 H K T, 2 X, 3 H J Z=, 14(I 6,2 X) /$,
550 WRITE OUTPUT TAPE 15, 956, KT, (VBTZ(KT,JZ), JZ=1, NZ)
560 CALL NIH104 (ICLOCK, JCLOCK)
WRITE OUTPUT TAPE 15,999, JCLOCK
5601 IF (NPLZ) $570,570,561$
561 DO 569 KT=1, MKTPLZ, LKTPLZ
562 DO $564 \mathrm{JZ}=1$, NZ
$563 \operatorname{VAP}(J Z)=\operatorname{VATZ}(K T, J Z)$
$564 \operatorname{VBP}(J Z)=\operatorname{VBTZ}(K T, J Z)$
565 WRITE OUTPUT TAPE 15, 904
566 WRITE OUTPUT TAPE $15,945, K T$, TK $(K T), ~ K V E, ~ P R O B N O ~$
945 FORMAT (58HPLOT OF VALUES VERSUS DISTANCE (JZ AND ZJ), FOR THE CASE
1, $3 H K T=, 13,4 X, 7 H T K(K T)=, F 5.2,4 X, 4 H K V E=, I 1,5 X$,
2 16HWXR786C. PROBNO. F10.4 /)
567 CALL WXR82C (VAP,VBP,VMIN,VMAX,NZ,NSPPLZ,NSKIPZ,ZJ, IFAB, IFHL)
569 CONTINUE
570 CALL NIH 104 (ICLOCK,JCLOCK) WRITE OUTPUT TAPE 15,999 , JCLOCK
571 IF (NPLT) $580,660,580$
580 DO $650 \mathrm{JZ=LJZPLT,MJZPLT,LJZPLT}$
587 WRITE OUTPUT TAPE 15,901
590 WRITE OUTPUT TAPE $15,946, \mathrm{JZ}, \mathrm{ZJ}(J Z)$, KVE, PROBNO
946 FORMAT ($54 H P L O T$ OF VALUES VERSUS TIME (KT AND TK), FOR THE CASE,
$13 \mathrm{HJZ}=, \mathrm{I} 2,5 \mathrm{X}, 7 \mathrm{HZJ}(J Z)=, \mathrm{F} 5 \cdot 2,4 \mathrm{X}, 4 \mathrm{HKVE}=, \mathrm{I} 1,9 \mathrm{X}$,
2 16HWXR786C. PROBNO. F 10.4 /)
600 IF (IFAB) $610,610,625$
610 DO $620 \mathrm{KT}=1$, NT
$620 \operatorname{VAP}(K T)=\operatorname{VATZ}(K T, J Z)$
625 IF (IFAB) $640,626,626$
626 DO $630 \mathrm{KT}=1$, NT
$630 \mathrm{VBP}(K T)=\operatorname{VBTZ}(K T, J Z)$
640 CALL WXR82C (VAP,VBP,VMIN,VMAX,NT,NSPPLT,NSKIPT,TK, IFAB, IFHL)
CALL NIH104 (ICLOCK,JCLOCK)
WRITE OUTPUT TAPE 15,999 , JCLOCK
650 CONTINUE
660 IF (IFVE) $800,800,661$
$661 \mathrm{KVE}=\mathrm{KVE}+1$
662 WRITE OUTPUT TAPE 15, 901
663 GO TO $(700,750,800)$, KVE
700 WRITE OUTPUT TAPE 15, 701
701 FORMAT (47HFOLLOWING CORRESPOND TO ZERO SHUNT CONDUCTANCE. /)
702 VMAX $=3$.
703 VMIN $=-2.5$
704 IF (IFAB) $705,705,714$
705 DO $712 \mathrm{KT}=1$, NT
$706 \mathrm{PA}=\mathrm{VATZ}(K T, N Z)$
707 DO $708 \mathrm{JZ}=1, \mathrm{NZ}$

708 VATZ $(K T, J Z)=-2.5 *($ VATZ $(K T, J Z)-$ PA $)$
$709 \mathrm{PA}=\mathrm{VATZ}(\mathrm{KT}, \mathrm{JS})$
710 DO $711 \mathrm{JZ}=1$, JH
711 VATZ(KT,JZ) $=$ CORE* $\operatorname{VATZ}(K T, J Z)-P A)+P A$
714 CONTINUE $531,715,715$
715 DO $722 \mathrm{KT}=1$, NT
716 PB $=$ VBTZ (KT,NZ)
717 DO $718 \mathrm{JZ}=1, \mathrm{NZ}$
718 VBTZ $(K T, J Z)=-2.5 *(\mathrm{VBTZ}(K T, J Z)-$ PB)
$719 \mathrm{~PB}=\mathrm{VBTZ}(\mathrm{KT}, \mathrm{JS})$
720 DO $721 \mathrm{JZ=1,JH}$
721 VBTZ $(K T, J Z)=\operatorname{CORE} *(V B T Z(K T, J Z)-P B)+P B$
722 CONTINUE
725 GO TO 531
750 WRITE OUTPUT TAPE 15, 751

752 DO $780 \mathrm{KT}=1$, NT
$753 \mathrm{PA}=\mathrm{VATZ}(\mathrm{KT}, 1)$
$754 \mathrm{~PB}=\mathrm{VBTZ}(\mathrm{KT}, 1)$
759 IF (IFAB) $760,760,769$
760 IF (ABSF (PA) - .001) 769,761,761
761 DA $=-.2 * P A$
762 DO $763 \mathrm{JZ}=1$, NZ
763 VATZ $(K T, J Z)=\operatorname{VATZ}(K T, J Z)+D A$
769 IF (IFAB) $780,770,770$
770 IF $(A B S F(P B)-.001) 780,771,771$
771 DB $=-.2 * P B$
772 DO $773 \mathrm{JZ}=1, \mathrm{NZ}$
773 VBTZ $(K T, J Z)=V B T Z(K T, J Z)+D B$
780 CONTINUE
783 GO TO 531
800 WRITE OUTPUT TAPE 15, 904
810 WRITE OUTPUT TAPE 15, 908
908 FORMAT (28HREAD INPUT FOR NEXT PROBLEM. //) WXR701C
815 WRITE OUTPUT TAPE 15, 901
820 GO TO 140 END

WXRT01C

SUBROUTINE WXR82C(VA,V8,VMIN,VMAX,NPLP,NSPACE,NSKIP,ABSCIS,IFPLAB,
X IFHL)
2.4 .64 ADDED 20422112222222622422 2462.
1.15 .64 1.16.64
1.10 .64 BLEND OF WXR80C AND WXR81C. 1.13 .64
1.2 .64 MODIFIED AND SIMPLIFIED PLOT ROUTINE.

DIMENSION VA(251), VB(251), ABSCIS(251), SCALE(12), SORD(111)
SORD(111) IS A VARIABLE WHICH PERMITS SPECIFICATION OF SYMBOLS TO BE ENTERRED IN THE 111 ALPHANUMERIC FIELDS OF UNIT SIZE, (111A1).

C FOLLOWING ARGUS STATEMENTS DEFINE VARIABLES AS PRINTER SYMBOLS.

ASYMA	ALF	A
ASYMB	ALF	B
ASYMC	ALF	C
ASYMX	ALF	X
ASYMY	ALF	Y
ASYMZ	ALF	Z
ASYMO	ALF	0
ASYMPL	ALF	+

ASYMBL ALF
C
120 WRITE OUTPUT TAPE 15, 902
902 FORMAT (I3HVA SHOWN (A). 2 X , $13 H V B$ SHOWN (B). $2 \mathrm{X}, 22$ HCOINCIDENCE SH XOWN (C). $2 X$, 53HSCALE SHIFT INDICATED BY SUBST. $(X, Y, Z$. FOR (A,B,C X). $4 \mathrm{X}, 7 \mathrm{HWXR82C} \cdot / 1$

C
570 KPLAB $=2+$ IFPLAB
575 KDK $=1+$ NSKIP
580 IF (NSPACE) $581,581,582$
581 NSPACE $=1$
582 JSPACE $=$ NSPACE -1
584 PRANGE $=110 . /($ VMAX - VMIN $)$
585 LZERO $=1.5$ + PRANGE* (-VMIN)
586 DSCALE $=($ VMAX-VMIN)/11.
587 SCALE (1) = VMIN
588 DO $589 \mathrm{~J}=2,12$
$589 \operatorname{SCALE}(J)=\operatorname{SCALE}(J-1)+\operatorname{DSCALE}$
130 WRITE OUTPUT TAPE 15, 903, (SCALE(J), J=1,12)
C 130 THIS LABELS ORDINATE SCALE
903 FORMAT (6HSCALES / $12(3 \mathrm{X}, \mathrm{F7}, 2) / 9 \mathrm{X}, 1 \mathrm{H}+, 11(9 \mathrm{X}, 1 \mathrm{H}+))$
$140 \mathrm{KT}=1$
180 DO $190 \mathrm{~J}=1,111$
$190 \operatorname{SORD}(\mathrm{~J})=$ SYMPL
191 SORD (LZERO) $=$ SYMO
195 GO TO $(220,200,240)$. KPLAB
$200 J A=1.5+\operatorname{PRANGE} *(V A(K T)-$ VMIN $)$
$201 \mathrm{JB}=1.5+\operatorname{PRANGE} *(\mathrm{VB}(K T)-$ VMIN $)$
202 IF (JA-JB) 221,203,221
203 IF (JA-1) 204,215,210
$204 \mathrm{JA}=\mathrm{JA}+110$
2041 IF $(J A-1) \quad 2042,205,205$
$2042 \mathrm{JA}=1$
205 SORD (JA) $=$ SYMZ
206 GO TO 400
210 IF (JA-111) 215,215,211
$211 \mathrm{JA}=\mathrm{JA}-110$
2111 IF $(J A-111) 212,212,2112$
$2112 \mathrm{JA}=110$
$212 \operatorname{SORD}(J A)=$ SYMZ
213 GO TO 400
$215 \operatorname{SORD}(J A)=$ SYMC
216 GO TO 400
$220 J A=1.5+$ PRANGE* $\operatorname{JVA}(K T)-$ VMIN $)$

```
        221 IF(JA-1) 222,230,225
    222 JA = JA + 110
    2221 IF (JA-1) 2222,223,223
    2222 JA = 1
    23 SORD(JA) = SYMX
    224 GO TO 231
    225 IF (JA-111) 230,230,226
        226 JA = JA -110
        2261 IF(JA-111) 227,227,2262
    262 JA = 110
        227 SORD(JA) = SYMX
        228 GO TO 231 = SYMA
        231 GO TO (400,241,240), KPLAB
        240 JB = 1.5 + PRANGE*(VB(KT) - VMIN)
        241 IF (JB-1) 242,250,245
        242 JB = JB + 110
        2421 IF (JB-1) 2422,243,243
        2422 JB = 1
        243 SORD(JB) = SYMY
        244 GO TO 400
        245 IF(JB-111) 250,250,246
        246 JB = JB - 110
        2461 IF (JB-111) 247,247,2462
    2462 JB = 110
    247 SORD(JB) = SYMY
    248 GO TO 400
    250 SORD(JB) = SYMB
    400 WRITE OUTPUT TAPE 15,940, KT, ABSCIS(KT), (SORD(J), J=1,111)
    940 FORMAT (I3, 1X, F4.2, 1X, 111A1)
    401 KT = KT + KDK
    4 0 2 ~ I F ( K T ~ - ~ N P L P ) ~ 4 0 5 , 4 2 5 , 5 0 0
    405 IF(IFHL) 410,410,420
    410 DO 411 J=1,111
    411 SORD(J) = SYMBL
    411 SORD(J)=SYMBL
    4 1 3 \text { SORD(111) = SYMPL}
    414 GO TO 430
    4 2 0 ~ D O ~ 4 2 1 ~ J = 1 , 1 1 1 1
    4 2 1 ~ S O R D ( J ) = ~ S Y M B L ~
    4 2 2 ~ D O ~ 4 2 3 ~ J = 1 , 1 1 1 , 1 0
    4 2 3 \text { SORD(J) = SYMPL}
    424 GO TO 430
    4 2 5 ~ D O ~ 4 2 6 ~ J = 1 , 1 1 1 1
    426 SORD(J) = SYMPL
    4 2 6 ~ S O R D ( U ) = ~ S Y M P L ~ \$ M O ~
    4 3 0 ~ S O R D ( L Z E R O ) ~ = ~ S Y M O ~
    4 3 1 ~ I F ( J S P A C E ) 1 9 5 , 1 9 5 , 4 3 2 ~
    4 3 2 ~ K S P A C E ~ = ~ J S P A C E ~
    440 WRITE OUTPUT TAPE 15, 950
    950 FORMAT(9X, 1H+, 109X, 1H+)
    C THIS ADVANCES ABSCISSA BY ONE PRINTER LINE WHEN KSPACE IS ONE OR
    460 KSPACE = KSPACE - 1
    470 IF(KSPACE) 195,195,440
```

END

SUBROUTINE WXR91C IQK,QB,QC,
KT, DELT,NSTEP,HAFDEL,DELSIX,KRTEST,
$1 \mathrm{KT}, \mathrm{NL}, \mathrm{DELT}, \mathrm{JS}, \mathrm{JH}, \mathrm{JT}, G A, G D, G S A, G S D$,
3 RACT,RINB,RINC, QUENCH, ROUTB, ROUTC, QENCHB, AFPOS)
1.21 .64 CORRECTED STATEMENT 453

MOD OF WXR85C
12.31 .63 ADDITION OF AFPOS.
12.18 .63 THIS IS CUBED VERSION.
12.18 .63 MOD OF WXR81 AND 83C.
12.18 .63 MOD OF WXR81C
$12.9 .63 \quad 12.12 .63$ 454-468)
12.5 .63 MOD OF 79 C .
RUNGE KUTTA FOR ACTIVE DENDRITES.

DIMENSION QK(14),QB(14),QC(14),A(14),B(14),C(14),DQ(14,4),
\times DB(14,4),DC(14,4)

RINC = RINC
C THIS STATEMENTS IS TO SATISFY ARGUMENT. RINC IS NO LONGER USED BY PROGRAM
400 JSTEP $=0$
406 IF (KRTEST) $410,410,407$
407 WRITE OUTPUT TAPE 15, 408, KT
408 FORMAT $(5 \mathrm{X}, 3 \mathrm{HKT}=, \mathrm{I} 3,65 \mathrm{X}, 25 \mathrm{HTEST}$ PRINT WITHIN WXR91C.)
410 JR=0
420 DO $430 \mathrm{JZ}=1$, NZ
$428 \mathrm{~B}(J Z)=Q B(J Z)$
$429 C(J Z)=Q C(J Z)$
440 IF (KRTEST) $445,445,441$
441 WRITE OUTPUT TAPE 15, 941 , JR, JSTEP
941 FORMAT (24HARGUMENTS A, B, C FOR JR $=$, II, $5 X, 6 H$ ISTEP $=, 131$
942 FORMAT ($5 \mathrm{X}, 10 \mathrm{E} 10.3$)
442 WRITE OUTPUT TAPE 15, 942, ($A(J Z), J Z=1, N Z)$
443 WRITE OUTPUT TAPE 15, 942, ($\mathrm{B}(J Z), J Z=1, N Z)$
444 WRITE OUTPUT TAPE 15, 942, $(C(J Z), J Z=1, N Z)$
$445 \mathrm{JR}=\mathrm{JR}+1$
$451 D Q(1, J R)=G A *(A(2)-A(1))-A(1)+R A C T * B(1) *(1,0-A(1))-$
$452 D Q(N Z, J R)=G D *(A(N L Z)-A(N Z))-A(N Z)+R A C T * B(N Z) *(1.0-A(N Z))-$
X QUENCH*C(NZ)*(A(NZ) +AFPOS)
453 DQ(JS,JR) $=G S D *(A(J T)-A(J S))+G S A *(A(J H)-A(J S))-A(J S)+\quad 1.21 .64$
454 DO $468 \mathrm{JZ=1,NZ}$ -
454 DO $468 \mathrm{JZ}=1, \mathrm{NZ}$
455 ATEST $=A(J Z)-.001$
456 IF (ATEST) $457,457,464$
457 ACUBE $=0$.
459 BTEST $=\mathrm{B}(\mathrm{JZ})-.0001$
460 IF (BTEST) $461,461,465$

```
4 6 1 D B ( J Z , J R ) = - B ( J Z ) * R O U T B
```

$462 D((J Z, J R)=-C(J Z) * R O U T C$
463 GO TO 468 (
464 ACUBE $=A(J Z) * A(J Z) * A(J Z)$
$465 \mathrm{BTOC}=\mathrm{B}(J Z) *($ ROUTB $+C(J Z) * Q E N C H B)$
466 DB $(J Z, J R)=$ RINB*ACUBE - BTOC
467 DC (JZ,JR) $=B T O C-$ ROUTC*C(JZ)
468 CONTINUE

470 DO $471 \mathrm{JZ}=2, \mathrm{JH}$
$471 D Q(J Z, J R)=G A *(A(J Z-1)+A(J Z+1)-A(J Z)-A(J Z))-A(J Z)+R A C T * B(J Z) *$
$\times(1.0-A(J Z))-$ UUENCH*C(JZ)*(A(JZ)+AFPOS)
$472 D O 473 J Z=J T, N L Z$
$473 D Q(J Z, J R)=G D^{*}(A(J Z-1)+A(J Z+1)-A(J Z)-A(J Z))-A(J Z)+R A C T * B(J Z) *$
$X(1 \cdot 0-A(J Z))-Q U E N C H * C(J Z) *(A(J Z)+A F P O S)$
$473 x$
481 IF (KRTEST) $490,490,482$
482 WRITE OUTPUT TAPE 15 , 982 , JR
483 WRITE OUTPUT TAPE 15,983 , (DQ(JZ, JR), $J Z=1, N Z$)
484 WRITE OUTPUT TAPE $15,983,(D B(J Z, J R), J Z=1, N Z)$
485 WRITE OUTPUT TAPE 15, 983, (DC(JZ,JR), JZ=1, NZ)
982 FORMAT (28HRUNGE-KUTTA DERIVATIVES. JR=, Il)
983 FORMAT ($7 \mathrm{X}, 10 \mathrm{E} 10.3$)
490 GO TO $(500,500,530,560)$, JR
500 DO $510 \mathrm{JZ}=1, \mathrm{NZ}$
$500 \mathrm{DO} 510 \mathrm{JZ=1}, N Z$
$508 \mathrm{~B}(J Z)=\mathrm{QB}(J Z)+\operatorname{HAFDEL} * D B(J Z, J R)$
$508 B(J Z)=Q B(J Z)+H A F D E L * D B(J Z, J R)$
$509 C(J Z)=Q C(J Z)+H A F D E L * D C(J Z, J R)$
$509 C(J Z)=Q C(J Z)+H A F D E L * D C(J Z, J R)$
$510 A(J Z)=Q K(J Z)+H A F D E L * D Q(J Z, J R)$
520 GO TO 440
530 DO $540 \mathrm{JZ}=1$, NZ
$538 B(J Z)=Q B(J Z)+D E L T * D B(J Z, 3)$
$539 C(J Z)=Q C(J Z)+D E L T * D C(J Z, 3)$
$540 \mathrm{~A}(\mathrm{JZ})=Q K(J Z)+D E L T * D Q(J Z, 3)$
550 GO TO 440
550 GO TO 440
560 DO $570 \quad \mathrm{JZ}=1, \mathrm{NZ}$
$568 \mathrm{QB}(J Z)=\mathrm{QB}(J Z)+(D B(J Z, 1)+D B(J Z, 4)+(D B(J Z, 2)+D B(J Z, 3)) * 2) * D E L S I$.
$568 Q B(J Z)=Q B(J Z)+(D B(J Z, 1)+D B(J Z, 4)+(D B(J, 2)+D B(J, 3)) * 2 \cdot) * D E L S I X$
$569 Q C(J Z)=Q C(J Z)+(D C(J Z, 1)+D C(J Z, 4)+(D C(J Z, 2)+D C(J Z, 3)) * 2) * D E L S I$.
570 QK $(J Z)=Q K(J Z)+(D Q(J Z, 1)+D Q(J Z, 4)+(D Q(J Z, 2)+D Q(J Z, 3)) * 2 \cdot) * D E L S I X$
580 JSTEP $=$ JSTEP +1
581 IF (KRTEST) $590,590,582$
582 WRITE OUTPUT TAPE 15, 583, JSTEP, (QK (JZ), JZ=1, NZ)
583 FORMAT (27HVALUES OF VAZ FOR JSTEP =, II, / $4 \mathrm{X}, 14(1 X, F 7.4)$)
584 WRITE OUTPUT TAPE 15, 586, (QB(JZ), JZ=1,NZ)
585 WRITE OUTPUT TAPE 15, 587, (QC(JZ), JZ $=1, N Z$)
586 FORMAT ($2 \mathrm{X}, 2 \mathrm{HQB}, 2 \mathrm{X}, 14(1 \mathrm{X}, \mathrm{F} 7.4)$)
586 FORMAT ($2 x, 2 H Q B, 2 x, 14(1 X, F 7 \cdot 4))$
587 FORMAT ($2 \mathrm{X}, 2 \mathrm{HQC}, 2 \mathrm{X}, 14(1 \mathrm{X}, \mathrm{F} 7.4) / /$)
590 IF (JSTEP - NSTEP) $410,600,600$
590 IF (JSTE
600 RETURN
END
SUBROUTINE WXR92C IQK,QB,QC,
1 KT, DELT,NSTEP,HAFDEL,DELSIX,KRTEST,
$2 \mathrm{NZ}, N L Z, J S, J H, J T, G A, G D, G S A, G S D$,
3 RACT,RINB,RINC, QUENCH, ROUTB, ROUTC, QENCHB, AFPOS)

```
1.21.64 CORRECTED STATEMENT }45
```

```
                1.14.64 TO MATCH 85C AS OF 1.8.64
```

 1.14.64 TO MATCH 85C AS OF 1.8.64
 1.7.64 1.14.64 TO MANS.

```
MOD OF WXR86C
12.31 .63 ADDITION OF AFPOS
12.20 .63 REPAIRED AT 452
12.20 .63 REPAIRED AT 452
12.18 .63 THIS IS CUBED VERSION.
12.18 .63 MOD OF WXR82 AND 84 C .
12.14 .63 MOD OF WXR82C
\(12.9 .63 \quad 12.11 .63 \quad 12.12 .63\)
12.5 .63 MOD OF 79C.
THIS IS RUNGE-KUTTA COMPUTATION FOR PASSIVE DENDRITES.
    \(C\)

DIMENSION QK(14),QB(14),QC(14),A(14),B(14),C(14),DQ(14,4),
\(\times \operatorname{DB}(14,4), D C(14,4)\)
\(C\)
RINC \(=\) RINC
400 JSTEP = 0
402 EQJ \(=-\bullet 1\)
406 IF (KRTEST) \(410,410,407\)
WXR701C
407 WRITE OUTPUT TAPE 15 , 408 , KT
408 FORMAT \((5 \mathrm{X}, 3 \mathrm{HKT}=, \mathrm{I} 3,65 \mathrm{X}, 25 \mathrm{HTEST}\) PRINT WITHIN WXR92C.) WXR71C
410 JR=0
420 DO \(430 \mathrm{JZ=1}, \mathrm{NZ}\) WXR71C
\(428 \mathrm{~B}(J Z)=Q B(J Z)\)
\(429 C(J Z)=Q C(J Z)\)
\(430 \mathrm{~A}(J Z)=Q K(J Z)\)
WXRT1C
441 IF (KRTEST) \(445,445,441\)
441 WRITE OUTPUT TAPE 15,941 , JR, JSTEP
941 FORMAT (24HARGUMENTS A,B,C FOR JR \(=\), I1, \(5 \mathrm{X}, 6 \mathrm{HJSTEP}=\), I3)
942 FORMAT ( \(5 \mathrm{X}, 10 \mathrm{E} 10.3\) )
442 WRITE OUTPUT TAPE 15, 942, (A(JZ), JZ=1, NZ)
443 WRITE OUTPUT TAPE \(15,942,(B(J Z), J Z=1, N Z)\)
444 WRITE OUTPUT TAPE 15, 942, \((C(J Z), J Z=1, N Z)\)
\(445 J R=J R+1\)
\(451 D Q(1, J R)=G A *(A(2)-A(1))-A(1)+R A C T * B(1) *(1.0-A(1))-\)
\(X\) QUENCH*C(1)*(A(1)+AFPOS)
\(451 x\)
\(452 D Q(N Z, J R)=G D *(A(N L Z)-A(N Z))-A(N Z)+\)
\(X B(N Z) *(1 .-A(N Z))+C(N Z) *(E Q J-A(N Z))\)
453 DQ(JS,JR) \(=G S D *(A(J T)-A(J S))+G S A *(A(J H)-A(J S))-A(J S)+\quad 1.21 .64\)
X RACT*B(JS)*(1•-A(JS)) - QUENCH*C(JS)*(A(JS) + AFPOS) 453X
454 DO \(468 \mathrm{JZ}=1, \mathrm{JS}\)
455 ATEST \(=A(J Z)-.001\)
456 IF (ATEST) 457,457,464
\(457 \mathrm{ACUBE}=0\).
457 ACUBE \(=0\).
459 BTEST \(=B(J Z)-.0001\)
459 BTEST \(=B(J Z)-.0001\)
460 IF \((B T E S T) 461,461,465\)
\(461 \mathrm{DB}(J Z, J R)=-B(J Z) *\) ROUTB
462 DC(JZ,JR) \(=-C(J Z) * R O U T C\)
463 GO TO 468
464 ACUBE \(=A(J Z) * A(J Z) * A(J Z)\)
465 BTOC \(=B(J Z) *(\) ROUTB \(+C(J Z) * Q E N C H B)\)
466 DB(JZ*


Equations

\[
\begin{gathered}
\dot{q}_{1}=k_{14}=\lambda_{14} q_{4} \\
q_{2}-\lambda_{1} q_{1}-\lambda_{12}\left(q_{1}\right)^{2}-\lambda_{31}, \\
\dot{q}_{2}=\lambda_{21}\left(q_{1}\right)^{2}-\lambda_{32} q_{2} \\
\dot{q}_{3}=\lambda_{32} q_{2}+q_{31}+q_{1} q_{1}-q_{3}-\lambda_{03} q_{3}
\end{gathered}
\]

Simplest symptom probodlyin following
\[
\begin{aligned}
& \dot{q}_{1}=k_{1 s} q_{1}^{2}-\lambda_{1} q_{1}-\lambda_{21} q_{1} q_{2} \\
& \dot{q}_{2}=k_{25} q_{1}+\lambda_{21}, q_{1} q_{2}-\lambda_{02} q_{2}
\end{aligned}
\]



One could dispense with (2) if one defines a threshold in the program
then, for \(q_{1}>\) thresh, have flow prom source prop. to \(q\). of startchargning (3)

象ornce \(=-\sum_{i} \lambda_{i s}\)
If \(q_{1}=0.2\) is thesh
\(\left(q_{1}\right)^{2} \approx .04\) ar twoch.

\(\left(q_{1}\right)^{2} \approx .01\) whenenertiotly formive
\(\therefore\) waut \(\left[\lambda_{1 s} q_{s}\right] \approx 5\).
for \(\lambda_{01}=1\)
Qlso, want \(\left[\lambda_{2 s} q_{s}\right] \approx 0.5\)
\(\lambda_{02} \approx 2\) ?
\[
\left(\lambda_{21} \times 10 \times q_{2}\right)>5
\]
\[
\text { but } \lambda_{21} *
\]

BuD Allones progzom dres not casily gore \(\lambda_{1 s}<q_{1}^{2}\) withows additronal cpts.

thegere
axept that not reversible, \(\lambda_{14}\) correspouls to \(G_{\epsilon}\) \(\lambda_{41}\) corremp to \(G_{r}\) \(\lambda_{31}\) correns to \(G_{j}^{r}\)
ant \(q_{2}+q_{3}\) serne as ansiliery variables.

Could modity to make reverruble, if this seams necessary, but does the axp, evibuce really prove it to he reversitle? Chach back on this. See caso 7 recont Taraki poper.

Also, con make a particuler \(\lambda=k_{1}+k_{2} q_{j}\) by nown of diminiest dependence relations.


\begin{tabular}{ll} 
TITLEWXR707C \\
\(c\) & \\
\(c\) & 11.7 .63 MOD OF WXR706C. \\
\(c\) & 10.18 .63 \\
\(c\) & 10.21 .63 \\
\(c\) & 10.15 .63 \\
c MOD OF WXR703C \\
c &
\end{tabular}

902 FORMAT IIBHOUTPUT OF WXRT06C.
\(\times 24 \mathrm{HDR}\). W. RALL, EXT. 64325. 1 15HBLDG. 31, 9 AR.
\(\times 28 \mathrm{HRECAP}\)
c TO SOLVE CHAIN OF COMPARTMENTS AND PLOT. BOTH ACTIVE AND PASSIVE. WXRTOLC
\(\begin{array}{lll}c & \text { NZ IS NUMBER OF COMPARTMENTS IN CHAIN. } \\ c & \text { NT } \\ c & \text { IS NUMBER OF TIME POINTS FOR EACH } Z \text { VALUE. }\end{array}\)
DZ AND DI ARE INCREMENTS IN \(Z\) AND \(T\).
VMIN AND VMAX DETERMINE ORDINATE SCALE FOR PLOT.
IFTEST \(=1\) YIELDS SOME INTERMEDIATE PRINTING. IFTEST \(=2\) YIELDS ROK PRINTING. NPLT IS NUMBER OF PLOTS VERSUS TIME.
KDZPLT IS NUMBER OF DZ INCREMENTS FOR \(Z\) VALUES OF PLOTS VERSUS T.
NGRIDT SPECIFIES NUMBER OF PT PER VERTICAL GRID LINE OF + .
NPLZ IS NUMBER OF PLOTS VERSUS LENGTH (Z).
KDTPLZ IS NUMBER OF OT INCREMENTS FOR T VALUES OF PLOTS VERSUS \(z\).
NSPPLZ SPECIFIES NUMBER OF PRINTER SPACES PER DZ OF PLOT •
NGRIDZ SPECIFIES NUMBER OF DZ PER VERTICAL GRID LINE OF +.
USUUALLY NPLT \(=1+\) NZ/KDZPL
USUALLY NPLZ \(=1+\) NT/KDTPLZ
NIL SPECIFIES NUMBER OF COMPARTMENTS, STARTING FROM ORIGIN, WHICH MUST BE
SPECIFIED TO INCLUDE ALL NONZERO INITIAL VALUES.
VMIN AND VMAX REPRESENT MIN AND MAX VALUES OF ORDINATE SCALE FOR PLOT •
VAL ARE VALUES ALONG Z FOR ACTIVE MEMBRANE, \(=\) OK IN 73 C .
VBZ ARE VALUES ALONG 2 FOR PASSIVE MEMBRANE, \(=0 K\) IN \(72 C\).
AB AND AC ARE AUXILIARY VALUES FOR ACTIVE CASE. \(=\) QB AND \(Q C\) IN \(73 C\).
VAT \((100,10)\) ARE VALUES SELECTED FOR TIME PLOT FOR ACTIVE MEMBRANE.
VBTP \((100,10)\) ARE VALUES SELECTED FOR TIME PLOT FOR PASSIVD MEMBRANE.
DIMENSION VAZ(202), VBZ(202), VAT (202), VBT(202), AB (202),AC(202),
900 FORMAT ( 1 HO )
901 FORMAT ( 1 H 1 )
903 FORMAT (22HEND OF WXR706C OUTPUT.)
904 FORMAT (////1)
120 WRITE OUTPUT TAPE 15, 902
140 READ INPUT TAPE 1,951 ,
\(x\) PROBNO, NZ,NT,DZ, OT, VMIN,VMAX, IFTEST
921 FORMAT 14X, 6HPROBNO, \(8 \mathrm{X}, 2 \mathrm{HNZ}, 8 \mathrm{X}, 2 \mathrm{HNT}, 8 \mathrm{X}, 2 \mathrm{HDZ}, 8 \mathrm{X}, 2 \mathrm{HDT}, 6 \mathrm{X}\),
```

X 4HVMIN, 6X, 4HVMAX, 4X, 6HIFTEST /)
141 IF END OF FILE 142,150
WXR701C
142 WRITE OUTPUT TAPE 15, 903
144 STOP
150 WRITE OUTPUT TAPE 15, }92
160 WRITE OUTPUT TAPE 15, 951,
X PROBNO,NZ,NT,DZ,DT,VMIN,VMAX,IFTEST
161 WRITE OUTPUT TAPE 15, }90
165 IF(IFTEST-2) 168,166,168
166 KRTEST = 1
C 166 KRTEST=1 CAUSES TEST PRINT WITHIN KUTTA-RUNGE SUBROUTINES.
167 GO TO 170
168 KRTEST = 0
169 IF(IFTEST-10) 173,173,170
170 NABC = IFTEST - 10
171 KNABC = NABC
171 THIS IS USED AT 410 FOR SELECTED PRINT.
172 GO TO 180
173 NABC = 0
180 READ INPUT TAPE 1, 952,
WXR701C
X NPLT,KDZPLT,NSPPLT,NGRIDT,NPLZ,KDTPLZ,NSPPLZ,NGRIDZ
9 2 2 ~ F O R M A T (6 X , ~ 4 H N P L T , ~ 4 X , ~ 6 H K D Z P L T , ~ 4 X , ~ 6 H N S P P L T , ~ 4 X , ~ 6 H N G R I D T ,
X 6X, 4HNPLZ, 4X, 6HKDTPLZ, 4X, 6HNSPPLZ, 4X, 6HNGRIDZ /)
952 FORMAT (8I10)
1 9 0 WRITE OUTPUT TAPE 15, 922 WXR701C
2 0 0 ~ W R I T E ~ O U T P U T ~ T A P E ~ 1 5 , ~ 9 5 2 , ~ W X R 7 0 1 C ~
X NPLT,KDZPLT,NSPPLT,NGRIDT,NPLZ,KDTPLZ,NSPPLZ,NGRIDZ
2 1 0 ~ W R I T E ~ O U T P U T ~ T A P E ~ 1 5 , ~ 9 0 4 ~ W X R 7 0 1 C ~
220 READ INPUT TAPE 1,
X 953, NIZ, (VI(IZ), IZ=1,14)
9 5 3 ~ F O R M A T ~ (I 5 , ~ 2 X , ~ 1 4 F 5 . 2) ~
230 WRITE OUTPUT TAPE 15, 923
WXR701C

```

```

 240 WRITE OUTPUT TAPE 15,
 X 953,NIZ, (VI(IZ), IZ=1,14)
 2400 KNIZ = NIZ - 14
 2401 JA = 1
 2403 IF(KNIZ) 241,241,2405
 2406 JB = JB + 14
 2407 READ INPUT TAPE 1, 953,
 XMMIZ, (VI(IZ), IZ =JA,JB)
 2408 WRITE OUTPUT TAPE 15, 953,
 XKNIZ, (VI(IZ), IZ=JA, JB)
 2409 KNIZ = KNIZ - 14
 2410 GO TO 2403
    ```
```

 241 WRITE OUTPUT TAPE 15, }90
    ```
    X 955, PROGNO, RACT,RINB,RINC, QUENCH,ROUTB,ROUTC
    955 FORMAT (A8, \(2 \mathrm{X}, 6 \mathrm{~F} 10.5\) )
    925 FORMAT (16X, 4HRACT, 6X, 4HRINB, 6X, 4HRINC, 4X, 6HQUENCH, \(5 X\),
    \(X\) 5HROUTB, \(5 X\), 5HROUTC /)
    243 WRITE OUTPUT TAPE 15 , 925
    244 WRITE OUTPUT TAPE 15 ,
    X 955, PROGNO, RACT,RINB,RINC,QUENCH,ROUTB,ROUTC
    245 WRITE OUTPUT TAPE 15, 904
    C 250 HERE GENERATE T VALUES, BEGINNING WITH ZERO.
    250 TK (I) \(=0\) 。
    260 DO \(270 \mathrm{KT}=2\), NT
    270 TK \((K T)=T K(K T-1)+D T\)
    \(280 \mathrm{ZJ}(1)=.5 * D Z\)
    281 DO 282 JZ=2, NZ
    \(282 \mathrm{ZJ}(J Z)=Z J(J Z-1)+D Z\)
    \(283 \mathrm{JZ}=0 \quad 1 \mathrm{JZ}\)
    \(284 \operatorname{IZP}(1)=1\)
    285 DO 287 JP = 2, NPLT
    \(286 \mathrm{JZ}=\mathrm{JZ}+K D Z P L T\)
    287 IZP(JP) \(=\mathrm{JZ}\)
    C 290 HERE \(G\) CORRESPONDS TO LAMBDA I-J.
        \(290 G=1 \cdot /(D Z * D Z)\)
    C 300 HERE COMPUTE RUNGE KUTTA STEP SIZE (DELT).
        301 TWOJJ \(=4 \cdot * G+\cdot 1 * R A C T+2 \cdot+\cdot 4^{*}+\) QUENCH
        310 NSTEP \(=\) TWOJJ*DT +.5
        311 IF (NSTEP) \(312,312,320\)
        312 NSTEP \(=1\)
        320 XND \(=\) NSTEP
                                WXR701C
        330 DELT \(=\) DT/XND
        331 HAFDEL \(=.5 * D E L T\)
        332 DELSIX \(=\) DELT \(/ 6\).
        340 NTZSTP \(=\) NT*NZ*NSTEP
        341 WRITE OUTPUT TAPE 15, 905, TWOJJ,G,DELT,NSTEP,NTZSTP
        905 FORMAT (15HCOMPUTED VALUES, \(5 \mathrm{X}, 5 \mathrm{HTWOJJ,9X,1HG,6X,4HDELT,5X}\),
        \(x\) 5HNSTEP, \(4 \mathrm{X}, 6\) HNTZSTP // \(15 \mathrm{X}, 3 \mathrm{~F} 10 \cdot 5,2 \mathrm{I} 10\) )
        3411 WRITE OUTPUT TAPE 15, 901
        3412 IF (IFTEST-1) 350,350,3413
        3413 WRITE OUTPUT TAPE 15,906
        906 FORMAT (23HTEST OUTPUT OF WXR706C. // 21HKT, TK (KT), KT=1,NT• / /)
        342 WRITE OUTPUT TAPE 15,343 , (KT, TK \(K T), ~ K T=1, N T)\)
        343 FORMAT (10(I3,F9.5))
        344 WRITE OUTPUT TAPE 15,907
        907 FORMAT (///21HJZ, ZJ \((\mathrm{JZ}), \mathrm{JZ}=1, \mathrm{NZ} \cdot / /)\)
        345 WRITE
        346 WRITE
```

 241 WRITE OUTPUT TAPE 15, }90
 055 FON, PROGNO, RACT,RINB,RINC,QUENCH, ROUTB,ROUTC
 955 FORMAT (A8, 2X, 6F10.5)
 925 FORMAT (16X, 4HRACT, 6X, 4HRINB, 6X, 4HRINC, 4X, 6HQUENCH, 5X,
 X 5HROUTB, 5X, 5HROUTC //
 243 WRITE OUTPUT TAPE 15, 925
 x 955, PROGNO, RACT,RINB,RINC,QUENCH,ROUTB,ROUTC
 245 WRITE OUTPUT TAPE 15, }90
 C 250 HERE GENERATE T VALUES, BEGINNING WITH ZERO.
 250 TK(1) = 0.
 260 DO 270 KT=2,NT
 270 TK(KT) = TK(KT-1) + DT
 280 Zu(1) = .5*DZ
 281 DO 282 JZ=2, NZ
 282ZJ(JZ)=ZJ(JZ-1)+DZ
 284 IZP(1) = 1
 285 DO 287 JP=2,NPLT
 286 JZ=JZ + KDZPLT
 287 IZP(JP) = JZ
 C 290 HERE G CORRESPONDS TO LAMBDA I-J.
 290G = 1./(DZ*DZ) WXR701C
 C 300 HERE COMPUTE RUNGE KUTTA STEP SIZE (DELT).
 301 TWOJJ = 4**G +.1*RACT + 2. +..4*QUENCH
 3 1 0 ~ N S T E P ~ = ~ T W O J J * D T ~ + ~ . 5 ~
 311 IF(NSTEP) 312,312,320
 312 NSTEP = 1
 3 2 0 ~ X N D ~ = ~ N S T E P
 WXR701C
 3 3 0 ~ D E L T ~ = ~ D T / X N D ~
 WXR701C
 3 3 1 ~ H A F D E L ~ = ~ . 5 * D E L T ~
 332 DELSIX = DELT/6.
 340 NTZSTP = NT*NZ*NSTEP
 341 WRITE OUTPUT TAPE 15, 905, TWOJJ,G,DELT,NSTEP,NTZSTP
 905 FORMAT (15HCOMPUTED VALUES, 5X,5HTWOJJ,9X,1HG,6X,4HDELT,5X,
 X 5HNSTEP, 4x, 6HNTZSTP // 15x, 3F10.5, 2I10)
 3 4 1 1 \text { WRITE OUTPUT TAPE 15, 901}
 3 4 1 2 ~ I F (I F T E S T - 1) ~ 3 5 0 , 3 5 0 , 3 4 1 3
 3413 WRITE OUTPUT TAPE 15, 906
 906 FORMAT (23HTEST OUTPUT OF WXR706C0 // 21HKT, TK(KT), KT=1,NT• //)
 342 WRITE OUTPUT TAPE 15,343, (KT,TK(KT), KT=1,NT)
 343 FORMAT (10(I3,F9.5))
 344 WRITE OUTPUT TAPE 15,907
 907 FORMAT (///21HJZ, ZJ(JZ), JZ=1,NZ•//)
 345 WRITE OUTPUT TAPE 15,343, (JZ, ZJ(JZ), JZ=1,NZ)
 346 WRITE OUTPUT TAPE 15,901
    ```
    241 WRITE OUTPUT TAPE 15, 904
        X 955, PROGNO, RACT,RINB, RINC, QUENCH, ROUTB, ROUTC
        955 FORMAT (A8, 2X, 6F10.5)
        925 FORMAT \(116 X, 4\) HRACT, \(6 X, 4\) HRINB, \(6 X, 4 H R I N C, 4 X, 6 H Q U E N C H, 5 X\),
        X 5HROUTB, \(5 X\), 5HROUTC /1
        243 WRITE OUTPUT TAPE 15, 925
        244 WRITE OUTPUT TAPE 15,
        X 955, PROGNO, RACT,RINB, RINC, QUENCH, ROUTB, ROUTC
        245 WRITE OUTPUT TAPE 15, 904
        C 250 HERE GENERATE T VALUES, BEGINNING WITH ZERO.
        250 TK (1) \(=0\).
        260 DO \(270 \mathrm{KT}=2\), NT
        270 TK \((K T)=\) TK(KT-1) + DT
        \(280 \quad Z J(1)=.5 * D Z\)
        281 DO \(282 \mathrm{JZ}=2\), NZ
        \(282 Z J(J Z)=Z J(J Z-1)+D Z\)
\(283 J Z=0\)
        284 IZP \((1)=1\)
        285 DO \(287 \mathrm{JP}=2\), NPLT
        \(286 \mathrm{JZ}=\mathrm{JZ}+\) KDZPL \(T\)
        287 IZP (JP) \(=\mathrm{JZ}\)
    C 290 HERE \(G\) CORRESPONDS TO LAMBDA I-J.
        \(290 G=1 . /(D Z * D Z)\) (
    C 300 HERE COMPUTE RUNGE KUTTA STEP SIZE (DELT).
        301 TWOJJ \(=4 \cdot * G+.1 * R A C T+2 \cdot+.4 * Q U E N C H\)
        310 NSTEP \(=\) TWOJJ \(\because D T+.5\)
        311 IF (NSTEP) \(312,312,320\)
        312 NSTEP \(=1\)
        320 XND \(=\) NSTEP
        WXR701C
        330 DELT \(=\) DT/XND WXRTO1C
        331 HAFDEL \(=.5 *\) DELT
        332 DELSIX \(=\) DELT/6.
        340 NTZSTP \(=\) NT*NZ*NSTEP
        341 WRITE OUTPUT TAPE 15, 905 , TWOJJ,G,DELT, NSTEP, NTZSTP
        905 FORMAT ( 15 HCOMPUTED VALUES, \(5 \mathrm{X}, 5 \mathrm{HTWOJJ} 9 \mathrm{X},, 1 \mathrm{HG}, 6 \mathrm{X}, 4 \mathrm{HDELT}, 5 \mathrm{X}\),
        \(x\) 5HNSTEP, \(4 x\), GHNTZSTP \(1 / 15 x, 3 F 10.5,2\) I 10 ;
    3411 WRITE OUTPUT TAPE 15, 901
    3412 IF (IFTEST-1) \(350,350,3413\)
    3413 WRITE OUTPUT TAPE 15,906
    906 FORMAT (23HTEST OUTPUT OF WXRT06C• // 21HKT, TK (KT), KT=1,NT• //)
    342 WRITE OUTPUT TAPE 15,343 , (KT, TK (KT), KT \(=1\), NT)
    343 FORMAT (10(I3,F9.5))
    344 WRITE OUTPUT TAPE 15,907
    907 FORMAT (///21HJZ, ZJ(JZ), JZ=1,NZ• /1)
    345 WRITE OUTPUT TAPE \(15,343,(J Z, 2 J(J Z), J Z=1, N Z)\)
    346 WRITE OUTPUT TAPE 15, 343, 901
\(X\) 4HVMIN, \(6 X\), 4HVMAX, \(4 X\), 6HIFTEST /
141 IF END OF FILE 142,150WXR701C142 WRITE OUTPUT TAPE 15 , 903
WXR701C
144 STOP WXR701C 150 WRITE OUTPUT TAPE 15, 921WXR701C
160 WRITE OUTPUT TAPE 15, 951 ,\(X\) PROBNO,NZ,NT,DZ,DT,VMIN,VMAX, IFTEST
161 WRITE OUTPUT TAPE 15, 904
165 IF (IFTEST-2) \(168,166,168\)
166 KRTEST \(=1\)
C 166 KRTEST=1 CAUSES TEST PRINT WITHIN KUTTA-RUNGE SUBROUTINES.
167 GO TO 170
168 KRTEST \(=0\)
169 IF (IFTEST-10) 173,173,170
170 NABC = IFTEST - 10
\(171 \mathrm{KNABC}=\mathrm{NABC}\)
C 171 THIS IS USED AT 410 FOR SELECTED PRINT.
172 GO TO 180
173 NABC \(=0\)
180 READ INPUT TAPE 1, 952 , ..... WXR701C
X NPLT,KDZPLT,NSPPLT,NGRIDT,NPLZ,KDTPLZ,NSPPLZ,NGRIDZ
922 FORMAT \(16 X, 4 H N P L T, 4 X, 6 H K D Z P L T, 4 X, 6 H N S P P L T, 4 X, 6 H N G R I D T\),
X 6X, 4HNPLZ, \(4 x, 6 H K D T P L Z, ~ 4 x, 6 H N S P P L Z, 4 X, 6 H N G R I D Z ~ /)\)
952 FORMAT (8IIO)
190 WRITE OUTPUT TAPE 15, 922 ..... WXR701C
X NPLT,KDZPLT,NSPPLT,NGRIDT,NPLZ,KDTPLZ,NSPPLZ,NGRIDZ
210 WRITE OUTPUT TAPE 15, 904 ..... WXR701C
220 READ INPUT TAPE 1 , ..... WXR701C
X 953, NIZ, (VI(IZ), IZ=1,14
230 WRITE OUTPUT TAPE 15 , 923
230 WRITE OUTPUT TAPE 15 , 923WXR701C
WXR701C
923 FORMAT (36HSPECIFICATION OF NIZ INITIAL VALUES. 1)
WXR701C
WXR701C
240 WRITE OUTPUT TAPE 15 ,

\[
\begin{aligned}
& \text { x } 953 \text {, NIZ, }(\text { VII }(I Z), I Z=1,14)
\end{aligned}
\]
\[
\frac{2401 \mathrm{JA}=1}{2402} 18=1
\]
\[
2402 \mathrm{JB}=14
\]
\[
2403 \text { IF (KNIZ) 241,241,2405 }
\]
\[
2405 J A=J A+14
\]
\[
2406 J B=J B+14
\]
\[
2407 \text { READ INPUT TAPE 1, } 953 \text {, }
\]
\[
\begin{aligned}
& \text { X MIZ, (VI(IZ), IZ }=\text { JA, JB) } \\
& 2408 \text { WRITE OUTPUT TAPE } 15,953,
\end{aligned}
\]
\[
2409 \text { KKNIZ, (VI(IZ), IZ }=\text { KNA, JB) }
\]
\[
2409 \text { KNIZ }=\text { KNIZ }-14
\]
\[
2410 \text { GO TO } 2403
\]
    241 WRITE OUTPUT TAPE 15, 904
        X 955, PROGNO, RACT,RINB, RINC, QUENCH, ROUTB, ROUTC
        955 FORMAT (A8, \(2 \mathrm{X}, 6 \mathrm{~F} 10.5\) )
        925 FORMAT (16X, 4HRACT, 6X, 4HRINB, 6X, 4HRINC, \(4 X, 6 H Q U E N C H, 5 X\),
        \(X\) 5HROUTB, \(5 X\), 5HROUTC //
        243 WRITE OUTPUT TAPE 15, 925
        244 WRITE OUTPUT TAPE 15,
        X 955, PROGNO, RACT,RINB, RINC, QUENCH,ROUTB, ROUTC
        245 WRITE OUTPUT TAPE 15, 904
        C 250 HERE GENERATE T VALUES, BEGINNING WITH ZERO。
        250 TK (1) \(=0\).
        260 DO \(270 \mathrm{KT}=2\), NT
        270 TK \((K T)=\) TK \((K T-1)+D T\)
        \(280 \mathrm{Zu}(1)=.5 * D Z\)
        281 DO \(282 \mathrm{JZ}=2\), NZ
        \(282 Z J(J Z)=Z J(J Z-1)+D Z\)
\(283 J Z=0\)
        284 IZP \((1)=1\)
285 DO 287 JP \(=2\), NPLT
        \(286 \mathrm{JZ}=\mathrm{JZ}+\mathrm{KDZPLT}\)
        \(287 \mathrm{IZP}(\mathrm{JP})=\mathrm{JZ}\)
    C 290 HERE G CORRESPONDS TO LAMBDA I-J.
        \(290 G=1 . /(D Z * D Z)\)
    C 300 HERE COMPUTE RUNGE KUTTA STEP SIZE (DELT).
        301 TWOJJ \(=4 \cdot * G+.1 * R A C T+2 \cdot+.4 * Q U E N C H\)
        310 NSTEP \(=\) TWOJJ*DT +.5
        311 IF (NSTEP) \(312,312,320\)
        312 NSTEP \(=1\)
        320 XND \(=\) NSTEP
                            WXR701C
        330 DELT \(=\) DT/XND
        331 HAFDEL OTNO
                            WXR701C
        331 HAFDEL \(=.5 *\) DELT
        332 DELSIX \(=\) DELT \(/ 6\).
        340 NTZSTP \(=\) NT*NZ \(\because\) NSTEP
        341 WRITE OUTPUT TAPE 15, 905 , TWOJJ,G,DELT,NSTEP,NTZSTP
        905 FORMAT ( 15 HCOMPUTED VALUES, \(5 \mathrm{X}, 5 \mathrm{HTWOJJ,9X,1HG,6X,4HDELT,5X}\),
        \(X\) 5HNSTEP, \(4 \mathrm{X}, 6\) HNTZSTP \(/ / 15 \mathrm{X}, 3 \mathrm{~F} 10.5,2110\) )
        3411 WRITE OUTPUT TAPE 15,901
        3412 IF (IFTEST-1) \(350,350,3413\)
        3413 WRITE OUTPUT TAPE 15, 906
        906 FORMAT (23HTEST OUTPUT OF WXRT06C. // 21HKT, TK (KT), KT=1,NT• //)
        342 WRITE OUTPUT TAPE 15,343 , (KT,TK(KT), \(K T=1, N T)\)
        343 FORMAT (10(1) F9 15,343, (KT, NK
        343 FORMAT (10(I3,F9.5))
        344 WRITE OUTPUT TAPE 15,907
        907 FORMAT \((/ / / 21 \mathrm{HJZ}, \quad \mathrm{ZJ}(J Z), \mathrm{JZ}=1, N z \cdot / 1)\)
        345 WRITE OUTPUT TAPE \(15,343,(J Z, 2 J(J Z), J Z=1, N Z)\)
        346 WRITE OUTPUT TAPE 15, 901


```

ASYMBL ALF
ASYMCO ALF
C
120 WRITE OUTPUT TAPE 15, }90
902 FORMAT(13HVA SHOWN (A). 2X, 13HVB SHOWN (B). 2X, 22HCOINCIDENCE SH
XOWN (0). 2X, 4OHRESCALING INDICATED AT TOP BY KA AND KB. 18X,
X 7HWXR76C. /1
130 WRITE OUTPUT TAPE 15, 903, (SCALE(J), J=1,6)
C 130 THIS LABELS ORDINATE SCALE
903 FORMAT (6HSCALES, 6X, F7.3, 5(13X, F7.3) / 15X, 1H+, 5(19X, 1H+),
X 4HKAKB)
140 KT = 1
141 KTEST = 1
150 IF(NGRID)160,160,200
160 NGRID = 10
C 200 BEGIN LOOP BY TESTING KT. FOR KT = I+NGRID%I, DISPLAY VERTICAL LINE OF +.
200 IF(KT-KTEST) 250,220,210
210 KTEST = KTEST + NGRID
211 GO TO 200
230SORD(J) = SYMPL
240 GO TO 320
250 DO 260 J=1, 101
260 SORD(J) = SYMBL
270 DO 280 J=1, 101, 20
280 SORD(J) = SYMPL
320 JA = LA(KT)
330 JB = LB(KT)
340 IF(JA-JB) 350,380,350
350 SORD(JA) = SYMA
360 SORD (JB) = SYMB
370 GO TO 400
380 SORD(JA) = SYMCO
400 WRITE OUTPUT TAPE 15, 940, KT, ABSCIS(KT), (SORD(J), J=1,101),
X KA(KT), KB(KT)
940 FORMAT (13, 1X, F9.4, 2X, 101A1, 2I2)
410 KT = KT + 1
4 2 0 ~ I F ~ (K T ~ - N P L P) ~ 4 3 0 , 4 3 0 , 5 0 0 ~
430 KSPACE = NSPACE - 1
440 IF(KSPACE) 200,200,450
450 WRITE OUTPUT TAPE 15, 950
950 FORMAT (15X, 1H+, 5(19X, 1H+))
C THIS ADVANCES ABSCISSA BY ONE PRINTER LINE WHEN KSPACE IS ONE OR MORE.
460 KSPACE = KSPACE - 1
470 GO TO 440
500 RETURN
END

```

\section*{SUBROUTINE WXR77C \(1 Q K, Q B, Q C\),}

1 NZ, G, DELT,NSTEP, HAFDEL, DELSIX, IFTEST,
2 RACT,RINB, RING, QUENCH, ROUTE, ROUT)
10.21 .63 STRENGTHENED QUENCH AT 466 AND 467
10.15 .63 MOD OF WXR73C
10.10 .63 REPLACED ALL COMMON AND EQUIVALENCE WITH APPROPRIATE ARGUMENTS AND CORRESPONDING DIMENSION STATEMENTS. PROGRAMS OTHERWISE UNCHANGED. \(9.26 .63 \quad 10.2 .63 \quad 10.4 .63\)

\author{
RUNG KUTAA FOR ACTIVE CHAIN
}

DIMENSION QR (202),QB(202),QC(202),A(202),B(202),C(202),DQ(202,4),
X DB (202,4),DC(202,4)
c
```

400 JSTEP = 0
4 0 5 ~ N L Z = N Z - 1 ~
406 IF(IFTEST) 407,410,407
4 0 7 WRITE OUTPUT TAPE 15, 408, NZ, NLZ, G, DELT, NSTEP
408 FORMAT (25HTEST PRINT WITHIN WXR73C. 5X, 3HNZ=, I3, 5X, 4HNLZ=,
X I3, 10X, 2F10.5, 15 //
410 JR=0
420 DO 430 JZ=1,NZ
4 2 8 B (J Z) = Q B (J Z)
429C(JZ)=QC(JZ)
4 3 0 ~ A (J Z) = Q K (J Z)
440 IF(IFTEST) 441,445,441
441 WRITE OUTPUT TAPE 15, 941, JR, JSTEP
941 FORMAT (24HARGUMENTS A,B,C FOR JR = ,I1, 5X, 6HJSTEP=, I3)
442 WRITE OUTPUT TAPE 15, 942, (A(JZ), JZ=1, NZ)
443 WRITE OUTPUT TAPE 15, 942, (B(JZ), JZ=1, NZ)
942 FORMAT (10X, (1X, 10F10.5))
444 WRITE OUTPUT TAPE 15, 942, (C(JZ), JZ=1, NZ)
445 JR = JR + 1
450 DQ(1,JR)=G*(A(2)-A(1))-A(1)+RACT*B(1)*(1.1-A(1))-
460 DQ(NZ,JR) = G*(A(NLZ)-A(NZ))-A(NZ) + RACT*B(NZ)*(1.1-A(NZ)) -
X QUENCH*A(NZ)*C(NZ)
4 6 5 ~ D O ~ 4 6 7 ~ J Z = 1 , ~ N Z ~
466DB(JZ,JR)=RINB*A(JZ)*A(JZ)-ROUTB*B(JZ) - QUENCH*B(JZ)*C(JZ)
467DC(JZ,JR)=RINC*B(JZ)-ROUTC*C(JZ) + QUENCH*C(JZ)*(A(JZ)+B(JZ))
480DQ(JZ,JR)=G*(A(JZ-1)+A(JZ+1)-A(JZ)-A(JZ))-A(JZ) + RACT*B(JZ)*
481 IF(IFTEST) 482,490,482

```
```

482 WRITE OUTPUT TAPE 15, 982, JR
484 WRITE OUTPUT TAPE 15, 983, (DB(JZ,JR), JZ=1,NZ)
485 WRITE OUTPUT TAPE 15, 983, (DC(JZ,JR), JZ=1, NZ)
982 FORMAT (28HRUNGE-KUTTA DERIVATIVES. JR=, I1)
983 FORMAT (10x, 10(3X, F8.2))
490 GO TO (500,500,530,560), JR
500 DO 510 JZ=1, NZ
5 0 8 B (J Z) = Q B (J Z) + H A F D E L * D B (J Z , J R)
509C(JZ) = QC(JZ) + HAFDEL*DC(JZ,JR)
5 1 0 A (J Z) = Q K (J Z) ~ + ~ H A F D E L * D Q (J Z , J R)
520 GO TO 440
530 DO 540 JZ=1,NZ
538B(JZ)=QB(JZ) + DELT*DB(JZ,3)
539C(JZ)=QC(JZ) + DELT*DC(JZ,3)
540 A(JZ)=QK(JZ) + DELT*DQ(JZ,3)
550 GO TO 440
560 DO 570 JZ=1, NZ
WXR71C
568QB(JZ)=QB(JZ)+(DB(JZ,1)+DB(JZ,4)+(DB(JZ,2)+DB(JZ,3))*2.)*DELSIX
5 6 9 Q Q (J Z) = Q C (J Z) + (D C (J Z , 1) + D C (J Z , 4) + (D C (J Z , 2) + D C (J Z , 3)) * 2 .) * D E L S I X ~
570 QK(JZ)=QK(JZ)+(DQ(JZ,1)+DQ(JZ,4)+(DQ(JZ,2)+DQ(JZ,3))*2.)*DELSIX
580 JSTEP = JSTEP + 1
581 IF(IFTEST)582,590,582
582 WRITE OUTPUT TAPE 15, 583, JSTEP, (QK(JZ), JZ=1, NZ)
5 8 3 FORMAT (28HVALUES OF VAZ(JZ) FOR JSTEP=,II, / 8X, 10(2X, F9.5) /)
5 8 4 WRITE OUTPUT TAPE 15, 586, (QB(JZ), JZ=1,NZ)
5 8 5 WRITE OUTPUT TAPE 15, 587, (QC(JZ), JZ=1,NZ)
56 FORMAT (8X, 2HQB, 10(2X, F9.5))
5 8 7 FORMAT (8 \mathrm { X } , 2 \mathrm { LHQC, } 1 0 (2 X , ~ F 9 . 5) / /)
590 IF (JSTEP - NSTEP) 410,600,600
600 RETURN
END
SUBROUTINE WXR78C IQK,
1 NZ,G,DELT,NSTEP,HAFDEL,DELSIX,IFTEST)
C
10.15.63 MOD OF WXR74C
10.10.63 REPLACED ALL COMMON AND EQUIVALENCE WITH APPROPRIATE ARGUMENTS
AND CORRESPONDING DIMENSION STATEMENTS. PROGRAMS OTHERWISE UNCHANGED.
9.30.63 MOD OF WXR71C 10.2.63 10.4.63
THIS IS RUNGE-KUTTA COMPUTATION FOR PASSIVE CHAIN OF COMPARTMENTS WXRTIC
C JZ IS COMPARTMENTAL INDEX. JR IS RUNGE-KUTTA INDEX.
C THE A(JZ) REPRESENT SUCCESSIVELY ARGUMENTS FOR RUNGE-KUTTA COEFFICIENTS.
C
DELT REPRESENTS THE TIME INTERVAL DETERMINED FROM LARGEST RATE CONSTANT•
DQ(JZ,JR) ARE SLOPES, WHEN MULT BY DELT THEY YEILD RUNGE KUTTA COEFICIENTS.

```

\section*{DIMENSION QK(202),A(202),DQ(202,4)}
c


406 IF (IFTEST) 407,410,407
407 WRITE OUTPUT TAPE 15,408, NZ, NLZ, G, DELT, NSTEP
408 FORMAT 125 HTEST PRINT WITHIN WXR74C. \(5 \mathrm{X}, 3 \mathrm{HNZ}=, \mathrm{I} 3,5 \mathrm{X}, 4 \mathrm{HNLZ}=\), X 13, 10X, 2F10.5, I5 /)

WXR71C
\(430 \mathrm{~A}(J Z)=\) QK (JZ)
WXRTIC
440 IF (IFTEST) 441,445,441
(NRIFE OUTPUT TAPE 15, 442, (JIJI, JZ=1, NZ
442 FORMAT \((6 H A(J Z)=1(10 F 12.5))\)
\(450 D Q(1, J R)=6 *(A(2)-A(1))-A(1)\)
WXR71C
\(460 D Q(N Z, J R)=G *(A(N L Z)-A(N Z))-A(N Z)\)
470 DO 480 JZ \(=2\), NLZ
480 DQ(JZ,JR) \(=G *(A(J Z-1)+A(J Z+1)-A(J Z)-A(J Z))-A(J Z)\)
482 WRITE OUTPUT TAPE \(15,483, J R,(D Q(J Z, J R), J Z=1, N Z)\)
483 FORMAT ( 28 HRUNGE-KUTTA DERIVATIVES. JR \(=\), II, / 5X, 10F11.2)
490 GO TO \((500,500,530,560)\), JR
\(510 A(J Z)=Q K(J Z)+H A F D E L * D Q(J Z, J R)\)
520 GO TO 440
WXR71C
530 DO \(540 \mathrm{JZ}=1, ~ N Z\)
550 A(JZ) \(=\) QK(JZ) + DELT*DQ(JZ,3)
560 DO \(570 \mathrm{JZ}=1\), NZ
570 QK \((J Z)=Q K(J Z)+(D Q(J Z, 1)+D Q(J Z, 4)+(D Q(J Z, 2)+D Q(J Z, 3)) * 2 \cdot) * D E L S I X\)
580 JSTEP \(=\) JSTEP +1
WXR71C
OUTPUT TAPE,582
582 WRITE OUTPUT TAPE 15,583, JSTEP, \((Q K(J Z), J Z=1, N Z)\)
583 FORMAT (27HVALUES OF VBZ FOR JSTEP =, I1, / 8X, \(10(2 X\), F9.5) /)
600 RETURN
WXR71C
END```

